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Samenvatting 
Dieptrekken is een plaatomvormproces dat veel wordt toegepast in bijvoorbeeld de 
automobielindustrie. Dit proces is vooral geschikt voor serieproduktie van plaatdelen met 
een complexe geometrie. De gereedschappen die voor dit proces nodig zijn moeten aan 
hoge eisen voldoen, omdat deze plaatdelen moeten vervaardigen met strikte kwaliteitseisen 
en tegelijkertijd grote krachten moeten kunnen weerstaan. Dientengevolge zijn de 
gereedschappen kostbaar. Oppervlaktebeschadigingen op het gereedschap kunnen tot uitval 
van de productie leiden. Eén van de faalmechanismen die dit kan veroorzaken is galling. 
Galling is een mechanisme waarbij materiaaloverdracht plaatsvindt van de plaat naar het 
gereedschap, waar ‘klodders’ gevormd worden op het oppervlak. Dit veroorzaakt 
vervolgens krassen in het plaatmateriaal. Tot op heden was het niet goed mogelijk om het 
optreden van galling in een industrieel plaatomvormproces te voorspellen. In dit 
proefschrift wordt een model gepresenteerd waarmee de het optreden van galling in een 
plaatomvormproces kan worden voorspeld. 
 
Om materiaaloverdracht van een plaat- naar een gereedschapoppervlak te onderzoeken zijn 
experimenten uitgevoerd op de schaal van een enkele ruwheidstop. Resultaten van deze 
experimenten zijn gebruikt om een aangroeimodel te formuleren voor een enkele 
ruwheidstop. Naast adhesie tussen het overgedragen materiaal en het gereedschapoppervlak 
is er rekening gehouden met de mechanische stabiliteit van de gevormde klodder. 
 
Om het optreden van galling in het contact tussen het plaatmateriaal en het gereedschap in 
een industrieel plaatomvormproces te analyseren, is er een aangroeimodel ontwikkeld voor 
meerdere ruwheidstoppen. Dit gallingmodel is gebaseerd op een bestaand contactmodel en 
het aangroeimodel voor een enkele ruwheidstop. Het ontwikkelde model is gebruikt om de 
invloed van een aantal parameters op galling in het dieptrekproces te onderzoeken. Volgens 
het model zijn de glijweg, de contactdruk en de relatieve sterkte van het overgedragen 
materiaal ten opzichte van het oorspronkelijke plaatmateriaal belangrijke factoren voor 
galling. 
 
Op basis van de resultaten van het ontwikkelde model is een Galling Prestatie Indicator 
(GPI) geformuleerd. De indicator wordt bepaald door twee elementen op twee 
verschillende lengteschalen: Ten eerste door een factor die bepaald wordt op de schaal van 
meerdere contact makende ruwheidstoppen. Deze factor kan worden uitgerekend met het 
gallingmodel. Ten tweede wordt de Galling Prestatie Indicator bepaald door factoren die 
voortkomen uit de operationele condities van het dieptrekproces als geheel. Belangrijke 
grootheden in deze context zijn de contactdruk op een bepaalde locatie van het gereedschap 



vi Samenvatting 

en de glijweg die wordt afgelegd langs het oppervlak van het gereedschap op die locatie. 
Deze grootheden kunnen worden verkregen met behulp van een eindige elementen 
simulatie van het dieptrekproces. De indicator is zondanig geformuleerd dat deze kan 
worden geïmplementeerd als een post processor voor eindige elementen simulaties van het 
omvormproces. Het gallingmodel is gevalideerd met galling experimenten en succesvol 
toegepast op het dieptrekken van een cup. 



 

Summary 
Deep drawing is a sheet metal forming process which is widely used in, for example, the 
automotive industry. With this process it is possible to form complex shaped parts of sheet 
metal and it is suitable for products that have to be produced in large numbers. The tools for 
this process are required to meet high demands, because these tools have to create high 
quality products while at the same time withstanding large forces. As a result, tooling is 
expensive. Damage might cause tools to fail during production and one such failure 
mechanism is galling. Galling is a mechanism whereby material transfer occurs from the 
sheet to the tool, where it forms lumps on the surface, and these lumps subsequently cause 
scratching into the sheet. Currently the occurrence of galling in real sheet metal forming 
applications is rather unpredictable. In this thesis a model is presented from which the 
galling tendency of a sheet material in forming operations can be predicted. 
 
To investigate the phenomenon of material transfer from a sheet to a tool surface, 
experiments are performed on a single asperity scale. Observations from these experiments 
are used to formulate a single asperity lump growth model. Beside adhesion between the 
transferred material and the tool surface, the mechanical stability of the formed lump is 
taken into account. 
 
In order to approach the galling situation in real contact between a sheet and a tool, a multi 
asperity lump growth model is developed. The multi asperity lump growth model is based 
on a developed contact model combined with the single asperity lump growth model. The 
multi asperity model is used to investigate the influence of a number of parameters on 
galling in deep drawing. According to the model, important parameters are the sliding 
distance, the contact pressure and the relative strength of the lump compared to the sheet 
material. 
 
A galling performance indicator is formulated on the basis of results from the multi asperity 
lump growth model. The results are split into two components: a galling impact factor, 
which is determined on contact scale, and operational conditions, contact pressure and 
sliding length, that are obtained from a finite element simulation of the deep drawing 
process. The indicator is formulated in such a way that it can be implemented as a post 
processor for finite element simulations. The galling model is validated by galling tests and 
successfully applied to deep drawing of a cup. 



viii Summary 

 



 

Contents 
List of symbols ...................................................................................................................xiii 

Latin symbols..................................................................................................................xiii 
Greek symbols ................................................................................................................xvi 

1 Introduction.........................................................................................................................1 
1.1 Galling .........................................................................................................................2 
1.2 Tribological system......................................................................................................3 
1.3 Objective of the research: development of a Galling Performance Indicator ..............6 
1.4 Outline of this thesis ....................................................................................................8 

2 Contact in deep drawing and galling...................................................................................9 
2.1 Contact scales ..............................................................................................................9 

2.1.1 Macro scale ...........................................................................................................9 
2.1.2 Meso scale...........................................................................................................11 
2.1.3 Micro scale..........................................................................................................12 

2.2 Contact models ..........................................................................................................12 
2.2.1 Macro scale .........................................................................................................13 
2.2.2 Meso scale...........................................................................................................15 
2.2.3 Micro scale..........................................................................................................17 

2.3 Existing galling models..............................................................................................23 
2.3.1 Initiation model ...................................................................................................24 
2.3.2 Lump growth model............................................................................................26 

2.4 Summary....................................................................................................................28 
3 Material transfer on a single asperity scale: experiments..................................................29 

3.1 Experimental setup.....................................................................................................29 
3.1.1 Ploughing Asperity Tester ..................................................................................29 
3.1.2 Load control and contacts ...................................................................................32 

3.2 Samples used in the experiments ...............................................................................34 
3.2.1 Tool asperity .......................................................................................................35 
3.2.2 Sheet material .....................................................................................................35 
3.2.3 Lubricant .............................................................................................................37 

3.3 Experiments ...............................................................................................................37 
3.3.1 Experimental strategy .........................................................................................37 
3.3.2 Lubricated experiments.......................................................................................38 
3.3.3 Unlubricated experiments ...................................................................................41 

3.4 Conclusions................................................................................................................53 
4 Material transfer and lump formation on a single asperity ...............................................55 

4.1 Introduction................................................................................................................55 



x Contents 

4.2 Interlocking on sharp peaks .......................................................................................56 
4.2.1 Model background ..............................................................................................56 
4.2.2 Model describing the formation of a dead metal zone ........................................58 

4.3 Stability criterion for pyramidal shaped asperities.....................................................63 
4.3.1 Introduction.........................................................................................................63 
4.3.2 Stress analysis of a lump.....................................................................................64 
4.3.3 Discussion of stress analysis ...............................................................................66 
4.3.4 Model with an extended base of the asperity ......................................................70 
4.3.5 Asperity fail criterion..........................................................................................77 
4.3.6 Crack formation ..................................................................................................79 
4.3.7 Lump failure model.............................................................................................80 

4.4 Adhesion ....................................................................................................................86 
4.4.1 Geometry and material aspects of adhesion........................................................87 
4.4.2 Surface and interfacial energy.............................................................................88 
4.4.3 Surface and interfacial energy in practice ...........................................................90 

4.5 Lump growth model...................................................................................................93 
4.5.1 Introduction.........................................................................................................93 
4.5.2 Volume of transferred material ...........................................................................93 
4.5.3 Geometry of the hexagon based lump.................................................................96 
4.5.4 Deposition of transfer layer on hexagon based lump ..........................................97 
4.5.5 Stresses inside hexagon based lump ...................................................................99 
4.5.6 Stability and material redistribution of the asperity ..........................................105 
4.5.7 Influence of parameters.....................................................................................110 

4.6 Summary..................................................................................................................117 
5 Lump growth multi asperity contact ...............................................................................119 

5.1 Introduction..............................................................................................................119 
5.2 Contact of elliptic asperities.....................................................................................119 

5.2.1 Meso scale.........................................................................................................119 
5.2.2 Micro scale........................................................................................................121 

5.3 Conversion from ellipse to hexagon based asperity.................................................125 
5.4 Galling calculations .................................................................................................133 

5.4.1 Calculations for a model system .......................................................................133 
5.4.2 Consequences for galling in deep drawing processes .......................................145 

5.5 Comparison between model and practice ................................................................146 
5.6 Implementation of Galling Performance Indicator ..................................................150 
5.7 Summary..................................................................................................................154 

6 Conclusions and recommendations.................................................................................157 
6.1 Conclusions..............................................................................................................157 
6.2 Discussion................................................................................................................158 



 
 

xi 

6.3 Recommendations....................................................................................................158 
Nawoord ............................................................................................................................161 
Appendix A: Stresses in pyramidal and hexagon based asperities ....................................163 

A.1 Introduction.............................................................................................................163 
A.2 Equilibrium calculations .........................................................................................164 

A.2.1 Equilibrium in x-direction ................................................................................164 
A.2.2 Equilibrium in z-direction ................................................................................165 
A.2.3 Moment equilibrium ........................................................................................165 

A.3 Results.....................................................................................................................166 
A.4 Geometrical properties of face ABC.......................................................................166 
A.5 Geometrical variation of geometry .........................................................................167 

Appendix B: Geometry and material aspects of adhesion .................................................171 
Bibliography ......................................................................................................................175 



xii Contents 



 

List of symbols 

Latin symbols 
a Contact radius [m] 
b Contact radius [m] 
c Constant that gives ratio lb/h [-] 
cfr Factor in galling model, fraction m divided by ∆γ [m2 J−1] 
cm Compatibility parameter for adhesion between metals [-] 
cp Specific heat [J kg−1 K−1] 
cs Scaling factor [-] 
cscale Scaling factor [-] 
f Coefficient of friction [-] 
fHK Dimensionless interface strength τ/k [-] 
g Gap between tool and sheet in forming simulation [m] 
h Height [m] 
h̄ Dimensionless height [-] 
heff Effective height (heff  = hz − u) [m] 
hs Separation compared to the mean summit height [m] 
hz Separation compared to the mean surface height [m] 
k Shear strength [Pa] 
kw Wear rate [m2 N−1] 
l Length of part of asperity before top [m] 
lb Effective length of part of asperity behind top [m] 
lcr Crack length [m] 
lslide Sliding distance (for one product) [m] 
m Fraction of wear volume that transfers [-] 
m Tresca factor [-] 
m1 Constant in galling model [m−1] 
m2 Constant in galling model [N−1] 
n Number of products or number of sliding tracks [-] 
nr  Normal unit vector [-] 
p (pa, pr) Contact pressure (apparent and real contact pressure) [Pa] 
ppl Normal stress on interface of plastic deforming material [Pa] 
q Power of heat generation [W] 
s Summit height compared to the mean summit height [m] 
u Surface rise [m] 



xiv List of symbols 

ur  Velocity vector [m s−1] 
v Sliding velocity [m s−1] 
w Width [m] 
w̄ Dimensionless width [-] 
wI, wII, wIII Widths in definition of asperity with hexagon base [m] 
wtotal Summation of wI, wII and wIII [m] 
x Coordinate direction [m] 
xc Centroid (x-coordinate) [m] 
x̄c Dimensionless centroid (x-coordinate) [-] 
y Coordinate direction [m] 
yc Centroid (y-coordinate) [m] 
z Coordinate direction [m] 
A (An, Ar) Area of contact (nominal and real area) [m2] 
Aplateaus Area of plateaus [m2] 
Asummit Summit area [m2] 
AH Hamaker constant [J] 
AXYZ Area size of face XYZ [m2] 
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1 Introduction 
Deep drawing is a sheet metal forming process which is widely used in, for example, the 
automotive industry. In this production process, a complex sheet metal product is formed 
starting from a plane sheet. Some examples of these products are car body parts, shaver 
caps, lemonade cans, pans and pan lids. An impression of the deep drawing process is given 
in figure 1.1. In the cross section, the deforming sheet metal and the process forces that act 
on the tools are shown. The die and the punch are the tools which contain the information 
of the desired geometry of the formed product. The die is the static tool which supports the 
sheet; the punch is the moving tool which presses the shape into sheet. The blank holder 
clamps the sheet on the die in order to control the sheet flow during forming. In this manner 
wrinkling of the workpiece can be avoided. 

The production process can be characterized by complex and expensive tooling and is 
therefore mainly used for mass production. Because of the high costs, the tools have to 
meet high requirements, as will be described below. 
Firstly, the tools should be able to create the geometry of the sheet metal product within its 
tolerances. This requirement is responsible for the high costs of the tools. Nowadays, deep 
drawing processes are typically developed using FEM simulations of the process. After 
manufacturing, the tools often have to be polished and refined by hand. This is more or less 
a trial and error process based on the experience of the tool workshop. By improving the 
accuracy of the FEM simulations, the trial and error process is reduced. 

 
Figure 1.1. Deep drawing process. 
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Secondly, the lifetime of the tool as related to geometrical product deviations is of 
importance. Wear causes geometrical deviations of the original shape. Beside deviations 
which are immediately related to tool shape deviations, friction can change due to surface 
defects of the tool. These defects can influence the product geometry, because of the 
reduced control on the friction. Further, these surface defects can damage the product 
surface. Due to the high costs of the tools and the high investments of a press shop, the 
lifetime of the tool is of great importance. 
A number of reasons are known that limit the lifetime of the tool. Below, some of them are 
given. 

– Wear of the tool which results in shape deviations of the product. 
– Dusting and flaking. These are processes which occur with the use of zinc coated 

material. In the case of dusting, zinc powder comes loose from the zinc coated 
layer, and pollutes the tools. Flaking is another case of pollution, where flakes 
come loose from the zinc layer due to inadequate adhesion or cohesion in the zinc 
layer itself. These forms of pollution may damage the tools and because of that 
effect the subsequent products may be damaged. If dusting or flaking happens in 
industrial practice, the production process has to be stopped from time to time to 
clean the tools. 

– Galling, a phenomenon caused by material transfer from the sheet to the tool. 
In this thesis, the focus is on the last phenomenon, galling, and will be discussed in more 
detail in the following section. 

1.1 Galling 
Galling is a known failure mechanism in sheet metal forming processes. It is defined as the 
mechanism in which material transfer takes place from the sheet to the tool to form lumps, 
whereby the lumps now attached to the tool will subsequently cause scratching into the 
sheet. This can result in a severely scratched product. The effect of this phenomenon on the 
surface quality is shown in figure 1.2. 
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Galling is a form of failure in which a number of phenomena play a role. The material 
transfer from the sheet to the tool indicates adhesive wear at the interface between the tool 
and the sheet material, which is stronger than the sheet material itself. In this way the lump 
can grow. Further, the transferred material has undergone work hardening or is composed 
of an oxide of the sheet material, which is harder than the sheet material itself [17]. Due to 
the increased hardness, the lump (which in fact consists of sheet material) is to a certain 
extent able to sustain the stresses generated during scratching. 
On deep drawing products small scratches can often be observed. Due to galling, these 
scratches become more serious. If the scratches reach a certain level, the products are 
labelled as scrap. If these scratches are due to the condition of a tool, this tool has to be 
reworked or replaced by another. It is difficult to give a general limit for an acceptable 
amount of galling behaviour. According to De Rooij [39] this limit depends strongly on the 
application of the product and on the paint procedure which is used after the forming 
operation. Typical depths of defects that are still visible after a paint procedure are in the 
order of 20 µm. 

1.2 Tribological system 
To investigate the tribological behaviour of a contact, usually a tribological system will be 
defined as proposed by Czichos [13]. In general a system is defined as a structure and its 
function. The structure is built of a set of elements, usually four elements: the two contact 
bodies, the interface between the contacting bodies and the environment. The function is 
connected to the system inputs and outputs. For a tribological system, typical inputs are 

 
Figure 1.2. Example of severely scratched product due to galling. 
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load, temperature, velocity and type of motion. Friction and wear are the outputs. In the 
context of the deep drawing production process, the contact bodies are the sheet and the 
tool (for example the die), see figure 1.3. The interface is most frequently a lubricant and 
can be absent in an unlubricated tribological system. The lubricant can be a deep drawing 
oil, but also a prelub which combines the functions of a conservation oil and a deep 
drawing lubricant. In the case of a lubricant-free deep drawing process, the available 
surface layers of the contact bodies have to fulfil the interface functions on their own. The 
environment is assumed to be the atmosphere of the production hall. To define the 
environment in this manner, special cases are excluded, such as hot forming. 

Some assumptions are made in the tribological system used in this thesis: 
– The properties of the tool do not change, so, the roughness is constant. The only 

shape deviations in this system are due to material transfer, the galling 
phenomenon. 

– The sheet has a fresh surface and is still not work hardened, because it is not run-
in. Therefore, the sheet is relatively soft and treated as a perfect plastic material. 

– In the contact, lubricant is present. 
The proposed system deviates from the more common one, where the surface does not 
plastically deform, although some plastic deformation of the asperity may occur. That type 
of surface is usual (and at least desirable) in machine element contacts. In the proposed 
system the sheet has a fresh surface, which is softer than the tool. 
Two types of plastic deformation of the sheet can be distinguished. One is the deformation 
of the surface as a result of contact stresses. This type of deformation is very local and can 
be derived within the envelope of the tribological system. The other is the deformation of 
the bulk of the sheet, which is, after all, the purpose of the forming process. This is a 
deformation on a larger scale than the system envelope. This deformation may influence the 
contact behaviour and can therefore be a useful input of the system. 

 
Figure 1.3. Elements of tribological system. The tool and sheet are the 
contact bodies, the lubricant as interface. The fourth element, the 
environment, is left out. 
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Sengupta [43] shows different zones in a deep drawn product, which undergoes different 
modes of stresses and plastic strains. These zones will be named here below and shown in 
figure 1.4. 

1) At the punch nose, a biaxial stretching of the sheet. 
2) On the punch corner radius the sheet material is stretched and bent around the 

corner radius. 
3) Between the die and the punch is a region where the sheet material is not 

supported. Here, a pure tensile straining takes place. 
4) At the die radius is a stretch bending state. 
5) At the blank holder region the sheet is radial drawn, accompanied by 

circumferential compression. 

The zones at points 1 and 2 are not very sensitive to galling due to the low sliding 
velocities. The low velocity has two effects: little heat generation in the contact (so, little or 
no lubricant failure) and little sliding distance. The unsupported zone of point 3 does not 
have any galling risk, due to the absence of contact. 
The zones given at points 4 and 5 are the most galling sensitive, due to the combination of 
contact pressure and sliding velocity. At point 4 the sheet material is bent over the die 
radius by the punch force. According to numerical calculations by Sniekers [44] the 
pressure in this zone is not uniformly distributed, but concentrated at the entrance and the 
exit of this zone, so the peak levels of the contact pressure can be much higher as the mean 
level. In the zone indicated with point 5, the pressure increases due to the decreasing 
contact surface in the blank holder and as a result there is a decreasing sliding velocity. This 
decreasing contact surface is a result of the decreasing outer radius of the blank and the 
thickening of the blank at the outer radius due to circumferential compression. The real 
contact pressure at the outer radius of the blank is compared with the mean contact pressure 

 
Figure 1.4. Deep drawing process with different zones. Zone 5 may 
contain a drawbead. 
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at the blank holder by Emmens [14]. In this work, it is shown that the real contact pressure 
is sometimes twice as much as the mean contact pressure. The effects presented by Sniekers 
and Emmens can be seen to some extent in figure 2.2. 
Within the blank holder zone a special region can sometimes be found which is not 
mentioned in [43]. That is the drawbead, which is a ridge in the blank holder zone, see 
figure 1.4. In addition to the radial elongation and the circumferential compression here, 
bending also occurs over this ridge. This results in local high pressures and is therefore a 
risky location in the product from the viewpoint of galling. 

1.3 Objective of the research: development of a Galling 
Performance Indicator 
The objective of the research is to develop a Galling Performance Indicator (GPI) from 
which the galling tendency of an aluminium and zinc coated sheet material in forming 
operations can be estimated. The GPI will be developed in such a way that it can be used as 
a post processor for FEM simulations of the deep drawing process. In this way the process 
can already be studied in terms of surface quality in the simulation stage. This reduces trial 
and error costs. The idea is to formulate this indicator in such a way that it predicts the 
galling behaviour on the basis of two input categories. These categories are: 

– Properties like the surface properties of the materials in contact (sheet and tool), 
coatings (if present), roughness, the lubricant and the temperature. Although, in 
the tribo system, these properties act on a small scale (roughness scale), the 
quantities belonging to these properties are more or less constant over tool and 
sheet. 

– Quantities as a result of the forming process, like the stresses, strains and sliding 
velocities. In general, these quantities are obtained by FEM simulations and are 
determined on a larger scale than the roughness. 

These inputs will be used for the formulation of a tribo system, as shown in figure 1.5. The 
calculation steps in the tribo system are marked within the dashed line. The contact state 
will be determined. On the basis of this state the amount of material transfer will be 
defined. With the transferred material, the new surface geometry can be predicted. 
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The research will be restricted to a selection of tool and sheet materials and some types of 
lubricant. Although the results of this work may cover more general results, the focus is on 
one type of aluminium sheet and zinc coated steel sheet. The aluminium sheets, divided 
into two types of surface structures are AA5182 EDT and AA5182 MF. The zinc coated 
steel sheet is DX54D Z EDT, which is a sheet with a galvanized zinc layer. The lubricant 
that is used depends on the type of sheet material. In the case of zinc coated sheet, the 

 
Figure 1.5. Strategy to determine the effect of galling. 
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lubricant is Quaker N6130 and Dry Coat DC2 for aluminium. The tool material is restricted 
to tool steel WN 1.2379. 
The contact bodies are assumed to be at room temperature. Isothermal behaviour is 
assumed, both for the environment temperature and the bulk temperature of the tools and 
sheet. The effect of temperature rise due to plastic forming will be ignored. 

1.4 Outline of this thesis 
To derive a method to estimate the galling tendency a number of steps are performed. In 
chapter 2 existing contact and galling models are presented which give a description of the 
contact that is relevant in the case of deep drawing with respect to galling. In chapter 3 
experiments are described that reproduce a single asperity contact between a tool asperity 
and sheet in the deep drawing process. The mechanism of material pick-up will be 
investigated for different combinations of tool and sheet materials. The results of this 
investigation are used in chapter 4 for the formulation of a material transfer model. The 
model that is presented in chapter 4 gives the lump growth on a single asperity and is based 
on the wear behaviour in the contact between tool and sheet, adhesion properties and the 
mechanical stability of the lump. In chapter 5 this model is implemented for the multi 
asperity case. The galling tendency of a real surface can be determined on the basis of a 
known tool roughness topography and based on contact parameters like the apparent 
contact pressure and sliding velocity. On the basis of this multi asperity model a GPI is 
formulated. Finally, in chapter 6 the main conclusions and recommendations are given. 



 

2 Contact in deep drawing and galling 

2.1 Contact scales 
The contact in the deep drawing practice is formed by a sheet and a tool. The tool has a 
smooth hard surface which is in contact with the sheet. The sheet has a soft, relatively 
rough and fresh surface, because in deep drawing a new sheet is placed every time against 
the tool surface. Further, due to plastic deformation, oxide layers on the surface will be 
broken. These properties contrast with most contact situations in mechanical engineering. 
Mostly, contacts in machine components are formed by surfaces which are run-in. 
The contact situation can be divided into different length scales. Every scale has its own 
characteristics and plays its own role in the case of deep drawing. Following De Rooij [39] 
three scales will be distinguished. These different scales of magnification are given in the 
following sections. These scales are divided as macro contact, meso contact and micro 
contact. The macro contact is the contact as seen on a scale visible to eye. The meso contact 
is the contact of the flattened sheet roughness against the flat tool. The micro contact is the 
contact of tool asperities in contact with a plateau (a flattened region) on the sheet. In [39] 
the scales are named differently, namely macro, micro and asperity scale. 

2.1.1 Macro scale 
The macro contact scale is the contact scale where both the tool and the sheet surface are 
considered as smooth. Here, the focus is on the physical quantities of the forming operation 
assuming the nominal dimension of the tools and the sheet. From this level the contact 
pressures, stresses and strains are determined, ignoring the roughness from both the tool 
and the sheet. This is the scale of FE-analyses where physical quantities like sliding 

 
Figure 2.1. Different contact scales. 
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velocities and stresses can be calculated. Other issues can be the determination of process 
forces and the check whether a product can be formed according to the forming limit 
diagram [3]. 
In the scope of this thesis, this scale is important to get physical 'bulk' quantities which can 
be used as an input on smaller scales. The contact pressure calculated on the macro scale 
can be used as the apparent contact pressure on the meso scale. The same strategy can be 
used for stresses and strains. A local stress state on the macro scale can be used as the mean 
stress state on the meso scale. The strain rate calculated on this scale can be used for 
calculating the effective hardness on a smaller length scale. This is important for the 
flattening of the sheet roughness as is shown in [28] and [48]. As an example, some results 
of a deep drawing FEM simulation are shown in figure 2.2, calculated with DiekA1 using 
3D Discrete Kirchhoff Triangle elements, a type of sheet elements. In this figure contact 
pressures and effective strain are presented at both the top and bottom side of the product. 
The product is a cup with a radius of 25 mm. The figure shows the forming state after a 
stroke of the punch of 25 mm. The initial blank has a radius of 50 mm and a thickness of 
0.8 mm. The contact pressures are determined using the reaction stresses of the contact 
elements, because the sheet elements calculate only the in-plane stresses of the sheet. The 
calculation of the contact stress is given in more detail in section 2.2.1. From figure 2.2 it 
becomes clear that on the die radius some pressure peaks appear and this region has a 
higher level of strain. 
On this scale different zones can be distinguished as discussed in section 1.2. 

                                                           
1 DiekA is an in-house finite element code for forming simulations developed at the 
University of Twente, www.dieka.org. 

http://www.dieka.org
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2.1.2 Meso scale 
The meso scale is the scale on which roughness can be observed. On this scale, the sheet 
surface shows a higher roughness than the tool surface. 
The focus on the meso contact scale is on the flattening of the sheet roughness. The tool on 
this scale is still relatively smooth compared to the sheet roughness. Due to contact pressure 
in combination with strain of the bulk material, the smooth hard tool flattens the softer and 
rougher sheet material. This flattening is dependent on the contact situation. Sengupta [43] 
shows the effect of lubrication. In the case of lubrication, the load is (partially) carried by 
the enclosed lubricant in the contact, which in turn distributes the load over the peaks and 
the valleys of the roughness. Wilson and Sheu [48] show that the flattening of the sheet 
roughness is a function of the difference of the direct contact pressure of the asperities and 

 
a 

 
b 

 
c 

 
d 

Figure 2.2. Results of a finite element calculation. It shows is the contact pressure 
distribution at the top (a) and the underside (b) of the sheet and the equivalent strain at the 
top (c) and underside (d). 
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the lubricant pressure. Besides, in [48] the effect of a one-dimensional bulk strain is shown. 
In [28] the effect is shown of different strain situations, in the case of a one-dimensional 
roughness, with the principal strain in plane of the sheet in the direction of the asperities 
and perpendicular on the asperities. From this, it follows that the contact area on the meso 
scale is very sensitive to the lubrication and the plastic deformation state of the bulk 
material. 

2.1.3 Micro scale 
On the meso contact scale the flattening of the asperities can be observed and the load is 
carried by the formed plateaus and, depending on the operational conditions, the lubricant. 
Zooming in on a single plateau, the roughness of the tool can be observed. This scale will 
be called the micro scale. The roughness on this scale is usually formed by grinding or 
polishing the tool. Due to the relative motion of the tool surface in relation to the sheet 
surface and the difference in hardness, the roughness of the tool scratches into the sheet 
metal. This roughness level is of importance for galling. Under certain conditions sheet 
material transfers from the plateaus to the tool asperities. When material transfer takes 
place, lumps grow on the tool summits. As a result these lumps scratch into the sheet 
material of the formed product. This scratching behaviour has two effects: 

– The friction behaviour in the contact between the tool and the sheet changes. 
According to [34] and [39] the friction gets a larger standard deviation. This 
means worse control of the sheet metal forming process. 

– If the lumps grown on the tool surface are too large, the sheet material becomes 
damaged too much. In this way a protective layer can be locally changed or 
removed, like a zinc layer in the case of zinc coated sheet. Another aspect is the 
aesthetic one. If the scratches are too deep, a paint layer is not able to fill the 
grooves in the sheet surface and scratches remain visible. 

2.2 Contact models 
In this section some relevant contact models on the different scales are presented. In section 
2.2.1 a contact model used in FEM calculations is presented. This model will be discussed, 
because it is relevant for obtaining and interpreting the data of the FEM calculations. In 
sections 2.2.2 and 2.2.3 models are presented which are more focussed on the details of the 
contact, which cover the more relevant properties needed to explain and calculate the 
galling effect. 
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2.2.1 Macro scale 
In this section the contact modelling on the macro scale will be discussed. On the macro 
scale both the tool and the sheet surface are considered as smooth, as already mentioned in 
section 2.1.1. The focus in this thesis is on the roughness scale, so the contact on macro 
scale is only of importance for obtaining mean values on the smaller scales. These values 
can be obtained by FEM calculations of forming simulations. Some aspects of contact in 
these FEM calculations are given here. 
In forming simulations three areas can be distinguished, each having its own characteristics. 
Hereafter these areas will be given together with the parts that are used in the case of deep 
drawing, as an example. 

1) The workpiece: the blank. 
2) The tools: the punch, die and blank holder. 
3) Contact: the connection between the workpiece and the tools. 

The workpiece is modelled with an element type that is able to describe plastic 
deformation. A lot of material models are available that can be the basis of the element 
formulation, like for example rigid-plastic or elastic-plastic models. Once the element is 
formulated and used in a FEM calculation, the material and mechanical behaviour is 
defined. Within the scope of determining the contact situation, only calculated values at the 
surface of the material in the contact region are of interest. Normal pressure equals the 
stress perpendicular to the workpiece surface; friction stresses equal the tangential stresses 
parallel to the surface. 
Problems arise in the case of planar elements, which are used in, for example, deep drawing 
processes. The number of stress components formulated in this type of element is reduced. 
This type of element takes into account membrane stresses and additionally bending and 
transverse shear stresses. The stress components given by all these types of elements are the 
in-plane normal stresses and shear stress. In general this is given as σxx, σyy and τxy, with the 
z-axis perpendicular to the surface. With this type of element, it is not possible to get the 
normal pressure and shear stresses on the surface in the contact. Another strategy has to be 
applied, which will be given hereafter. 
The modelling of the tools has the function of giving geometrical constraints to the 
workpiece. These constraints are a function of location, time and sometimes of physical 
quantities like pressure and temperature. The simplest case is the situation where the 
constraints are only a function of location and time. In this case only the geometry of the 
contact region has to be modelled. This can be done with a mesh or in the case of simple 
geometries by an analytical description. In the case of more complex constraints, for 
example elastic tools, the body of the tool has to be modelled as well with elements that 
describe the material of the tool. 
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The key to obtaining the contact pressure in the case of planar elements is found in the 
contact elements. In the case where the distance between a workpiece node and the tools is 
above a certain level, the elements do nothing. Below this distance, the element determines 
the contact pressure using a penalty function, defined as: 
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The penalty Cn is a fictive stiffness of the contact; g is the gap between the workpiece node 
and the tool. This is fictive, because a surface in geometrical sense cannot have stiffness; 
this is only the property of a body. In the case of penetration of the workpiece in the tool 
(finite Cn value), the contact element generates a contact pressure. Depending on the Cn 
value used, the contact pressure changes [8], as can be seen from equation (2.1). In the case 
of an infinite value of Cn no penetration of the workpiece into the tools is present, but this 
gives numerical problems. In practice, a compromise between stiffness and numerical 
stability has to be found. Although the stiffness is fictive, the contact pressure generated 
through this method is an estimation of reality, because the generated reaction stresses form 
the workpiece such that the tool constraints are approximated. The better this 
approximation is, the higher the accuracy of the contact stresses found in this manner. The 
influence of the penalty Cn is shown in figure 2.3. The same simulation is performed three 
times, only the contact stiffness is altered. According to this calculation the pressure 
distribution becomes flatter in the case of a lower stiffness. So, as long as a higher stiffness 
gives no numerical problems, more details of the contact pressure are obtained. This may 
be important to find local pressure peaks. Typically, pressure peaks at the beginning and 
end of the die radius region are clearer in figure 2.3c than in figure 2.3a. Compared to the 
results presented in figure 2.3a the local pressure peaks on the die radius in figure 2.3c are 
about 15 % larger, on the blank edge even 20 %, the pressure valley on the die radius is 
about 50 % lower. From these values it may be concluded that the stiffness conditions 
influence the results that are obtained by FEM calculations. So, using contact data obtained 
from FEM calculations, one should be aware of the influence of the contact stiffness 
penalty. 
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The shear stress on the sheet surface, that is the friction stress, is also determined using the 
contact elements. When the shear stress is determined, using Stribeck frictional behaviour 
curve or the Coulomb friction model, it is strongly related to the normal stress. That means 
that the influence of the contact stiffness penalty also acts on the magnitude of surface shear 
stress. 

2.2.2 Meso scale 
As already mentioned in section 2.1.2, the meso scale is the scale on which the roughness 
can be observed. The roughness in combination with the mechanical properties of the 
contact bodies determines the contact behaviour. On the meso scale only the roughness of 
the sheet material is taken into account and the tool is supposed to be flat. The sheet is 
relatively soft compared to the tool. Because the sheet is relatively rough and soft compared 
to the tool, plateaus are formed on the sheet during loading of the contact between these 
bodies, due to plastic deformation of the sheet. An example of the geometry of a sheet 
surface is shown in figure 2.4. 

 a b c 
Figure 2.3. Influence of Cn in the contact model on the contact pressure of 
the die. The pressure is presented as the graph perpendicular on the sheet 
surface. The values of Cn are 100 (a), 200 (b) and 400 N/mm3 (c). 
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The size of these contacts can be calculated using force equilibrium integrating the contact 
pressure over the real contact and using some assumptions. First, the tool is assumed to be 
rigid and ideally flat and the sheet deforms plastically. The second assumption is that the 
real contact pressure pr equals the hardness H, so: 

 Hpa α=  (2.2) 

In this relation pa is the apparent contact pressure and α the fraction of area into contact 
defined as Ar/An, with Ar and An respectively the real and the nominal area of contact. From 
relation (2.2) and α given as: 
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the separation hz can be calculated. Here, φ is the height distribution function of the sheet 
surface and hz the separation of the surfaces, defined as distance between the tool surface 
and the mean surface height line of the sheet. The sheet surface above the level hz forms the 
contact as depicted in figure 2.5. The material above the level hz is pressed into the sheet 
surface. 
According to Pullen and Williamson [37] this relation is only true if the different contact 
spots are well separated from each other and operate independently of each other. In [37] is 
shown that normally contact spots are not independent of each other. Due to the indentation 
of the surface fraction that is in contact, the surface fraction that is not in contact rises with 
a constant value u, see figure 2.5. The figure shows at the dark areas the material that is 

 
Figure 2.4. Surface geometry of sheet metal with an EDT texture, 
given as a height map. The area is 1 mm2. 
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pushed into the rough surface and is responsible for the surface rise of the contact fraction 
that is not in contact. The constant rise of the valleys is used to derive the following 
relation: 

 
α
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To calculate α in relation (2.4), hz in relation (2.3) has to be replaced by heff, with 
heff  = hz − u, the separation compensated by the rise of the valleys. 

Because of the limitations of the model of Pullen, Westeneng [47] developed an extended 
contact model. Aspects which are covered in the model of Westeneng and not in the model 
of Pullen are the following: asperity persistence (i.e. the resistance against deformation at 
higher loads), work hardening and tensile bulk deformation. The drawback of the 
Westeneng model is the complexity of the model. This complexity deals with the 
calculations as well as how to obtain parameters of the model, like the persistence 
parameter. 

2.2.3 Micro scale 
On the micro scale the roughness of the tool is of interest. As shown in figure 2.1 on this 
level, the tool roughness is in contact with the flat plateaus that are formed on the sheet 
surface. In the existing galling models, presented in section 2.3, the contact is based on 
summit contact models. These models use the following steps: 

1) The roughness is determined, specially the summits. 
2) The contact is determined. This is related to the summits in contact. 
3) The wear regime of every summit is determined. This is related to the galling 

behaviour. 

 
Figure 2.5. Rise of soft rough surface loaded by a rigid flat, 
after [37]. 
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Below, these steps will be discussed. In figure 2.6 an example of the geometry of a tool 
surface is shown. 

Determination of roughness 
Because of the random nature of roughness, it is very difficult, if not impossible, to 
describe the exact surface geometry. To describe the phenomena in the contact, there are 
some alternatives to characterise the surface. This can be done by: 

– Discretization of the surface. In general a part of the surface is taken, that covers 
the relevant properties. The wavelengths that can be described are limited on the 
one hand by the spatial resolution and on the other hand by the measurement 
domain. The discretization of the surface is done by surface measurement 
equipment, which measures the local surface heights on a line or on a grid on 
equidistant points. In this way a vector with profile data or a matrix with surface 
data is obtained. Examples of surface measurement equipment are an interference 
microscope and a confocal microscope. 

– Describing the surface by a reduced data set, for example a set which contains 
only basic data of the summits, like the height and radius of every individual 
summit. In this and the former method, generally only a part of the contact surface 
is covered by the data and it is of importance that this data is representative for the 
whole contact area. 

– Describing the surface statistical parameters, for example the height density 
function, the Ra or Rq value and the summit density. 

 
Figure 2.6. Surface geometry of a tool with a grinded surface, given 
as a height map. The area is 1 mm2. 
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These methods describing the surface are not completely independent, although the 
implementation in contact models may be very different. Describing the surface in a few 
scalar parameters or an algebraic height distribution, like the Gaussian distribution, is 
mainly used for algebraic studies and simple sensitivity studies. The discretized surfaces 
are used in numerical models, like finite element or boundary element analysis. In practice 
the discretized surface data are used to construct the other types of surface description. For 
example, the height distribution function or a set of summits is constructed from the 
discretized data. 
The galling models given in section 2.3 are based on summit contact, using spherical or 
elliptical summits. In the initiation model described in section 2.3.1, Van der Heide [20] 
used a set of summits, containing the height and radius of every summit. In the lump 
growth model described in section 2.3.2, De Rooij [39] used a fixed radius for every 
summit combined with a summit height density function. 
To use data of real tool surfaces in the galling models, some data conversions have to be 
carried out. First discretized surface data has to be generated by a surface measurement. 
From this discretized surface the summits have to be extracted. In [20] and [39] this is 
performed by the nine-point criterion [16]. In this method points are defined as a summit if 
its height exceeds the height of its eight direct neighbour points. The next step is to define 
the radius of the summit using the finite difference method. The advantage of this method is 
its simplicity. The drawback is the scale dependency. 

Determination of contact 
To determine the contact situation, the basic physical principles at the micro scale are 
similar to the meso scale. The difference is the way of modelling. The contact is determined 
on the basis of force equilibrium and plastic deformation of the surface, but in this case on 
the basis of summit contact. 
To fulfil the requirement of equilibrium, the summation of each individual summit has to 
be equal to the total normal force. In the case of a spherical summit, assuming that contact 
pressure pr equals the hardness H, the force on a summit with radius β is: 

 HHaFn πβδπ 22 ==  (2.5) 

In this relation a is the radius of contact and δ the indentation of the rigid summit in the 
plastic material of the counter surface. The last term of relation (2.5) is based on a 
paraboloid approximation of a sphere. Relation (2.5) holds for the situation that is equal to 
an indentation, that means that in all directions of the summit there is contact. In the case of 
scratching and plastic deformation of the counter surface, the contact is concentrated at the 
front side of the summit, see figure 2.7. In that situation, relation (2.5) has to be corrected 
for the reduced real contact area. For plastic material behaviour and keeping the indentation 
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constant, relation (2.5) has to be multiplied with a correction factor of 0.5. In the case of 
elastoplastic material behaviour this correction factor is in between 0.5 and 1. 

The summation of the load carried by all the summits gives: 
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Here, s is the height of a summit, hs the separation between a plastic sheet plateau and the 
mean plane of the summit height of the tool surface, see figure 2.8.  Ω is the set of summits 
that are in contact. In the case of a given surface geometry, a relation is obtained between 
Fn and hs, so the separation between the surfaces of the tool and sheet can be calculated for 
a given normal force. This is an iterative calculation, because the set Ω is not known 
beforehand. Once hs is known, each individual δi (equal to si - hs) as well as the attack angle 
θ of every summit is known, see figure 2.7. In a comparable manner, this is possible with a 
summit height density function assuming a constant radius. The attack angle θ will be used 
in wear and galling models and is defined as: 
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Sometimes, the summit geometry is defined using two radii in perpendicular directions. 
This gives an extra degree of freedom, as a result of which it becomes possible to formulate 
a summit with an elliptic contact spot. Equation (2.5) changes to: 

 HabHF yxn δββππ 2==  (2.8) 

In equation (2.8) a and b are the radii of the contact ellipse in, respectively, the sliding 
direction and perpendicular to it. The radii of the summit are given by βx and βy, where x 
gives the sliding direction. In the models derived in this thesis, in cases where an asperity is 
defined as an ellipsoid, it will be done by using two radii as given here. 

 
Figure 2.7. Definition of quantities related to a summit. 
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Wear regime 
The wear regime is closely related to the contact situation. The contact as given above can 
be used as a starting point for determining the wear regime. The wear regime is related to 
galling as used in the models given in section 2.3. 
The relation between the contact situation and the wear mode of a spherical asperity is 
shown by Hokkirigawa and Kato [24]. On the basis of experiments and a comparison with 
the slipline models of Challen and Oxley [10] a wear mode diagram is constructed, which 
gives the wear mode in the case of a given degree of penetration and the shear strength at 
the contact interface. In this diagram, three wear modes are distinguished: 

– Ploughing: material is displaced from the wear track to side ridges, no material is 
removed. 

– Wedge formation: formation of a wedge of material in front of an asperity. 
– Cutting: removal of material in the form of ribbon-like wear debris. 

In [24] the wear modes for a spherical asperity are compared with results obtained by a set 
of 2D slipline models presented in [10]. Due to the 2D nature of the slipline models, the 
contact situations of the models don't fully agree with the experiments. Nevertheless, the 
results of the slipline models and the experiments have useful similarities. The models are 
shown in figure 2.9. In the slipline models, some differences can be observed compared to a 
contact with a spherical asperity. The spherical asperity is changed into a wedge shaped 
one. Besides that, the wear modes are slightly adapted. Because of the 2D nature, it is not 
possible to form side ridges. The ploughing mode in the 2D situation is replaced by a 
rubbing mode, so the material can only flow under the wedge, as can be seen in figure 2.9a. 
The wedge mode is explained by a model, called the wear model. In fact, the model is not a 
correct slipline field, because it does not show a steady field, but it is able to describe the 
instationary wear behaviour. The cutting model is not really different in a 3D situation. 

 
Figure 2.8. Definition of summit height and surface separation on 
micro scale. 
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On the basis of this model the wear regimes are determined by two variables: the attack 
angle θ and the dimensionless shear strength of the interface fHK. The definition of fHK is 
given by fHK = τ/k, with τ the shear strength of the interface and k the shear strength of the 
bulk material of the plastic deforming body. 
According to [39] the regimes are separated by two functions, see figure 2.10. 
The transition between the cutting regime and the others is given by: 

 ( )HKfarccos25.0 −⋅= πθ  (2.9a) 

and between the ploughing and wedging regime by: 

 HKfarccos5.0 ⋅=θ  (2.9b) 

Relation (2.9b) follows from the definition of the slipline field of the models. When 
crossing the border given by relation (2.9b), the slipline field comes out of the flat surface 
and lies on top of it, as can be seen as a difference between figure 2.9a and 2.9b, which 
makes the difference between only plastic deformation of the material and at the wedging 
site in wearing off of material. Relation (2.9a) is not defined by the models given in [10]. 
The slipline models do not cover the whole wear mode diagram; for some combinations of 

 

 

a b 

 
c 

 

Figure 2.9. Slipline wear models according to [10] with the modes rubbing (a), wear (b) 
and cutting (c) . 



2.3 Existing galling models 

 

23

fHK and θ no model is available. For example, the cutting model is only valid if θ exceeds 
45 degrees, according to real practice, cutting may already occur in the case that θ has 
much lower values. Other models, for example Challen and Oxley [11], show that a cutting 
model can also be used in cases for lower values of θ. For the transition given by relation 
(2.9a) in [39] no basis is given. In [11] a relation for the transition is given between the 
cutting regime and the others. This relation is dependent on the work hardening of the 
plastic material. In the case of no work hardening, this relation reads: 
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which is near the transition given in relation (2.9a) as can be seen in figure 2.10. Because 
the transition given by equation (2.9a) is close to the one given by equation (2.10), only 
relation (2.9a) will be used further on. 

2.3 Existing galling models 
In the following sections (2.3.1 and 2.3.2) two models will be shown which each deal with 
a certain stage in the galling phenomenon. The model shown in section 2.3.1 is a model for 
lubricated deep drawing contacts and predicts when a lubricant layer fails. When the 
lubricant fails, this enables direct contact between tool and sheet, so, a possibility for 

 
Figure 2.10. Domains of the different wear regimes with solid lines 
after [39] and dashed line after [11]. 
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material transfer is born. The model given in section 2.3.2 is a lump growth model, which 
predicts the lump growth in the case of unlubricated contacts. 
The models model the contact in the manner as discussed in section 2.2. A purely plastic 
contact is assumed. The sheet material is relatively soft compared to the tool material, so 
the sheet will deform in a plastic manner. Because the sheet is rougher than the tool, 
plateaus will be formed on the sheet, which have contact with the tool. The asperities of the 
tool, in their turn, scratch into these plateaus. During this scratching the soft sheet material 
may transfer to the tool asperities. The models focus on the contact between these tool 
asperities and tool plateaus. The latter is for sake of simplicity assumed to be flat. Relation 
(2.6) can be used to determine the separation of the two surfaces, which summits are in 
contact and the attack angle of each summit that is in contact. 

2.3.1 Initiation model 
To initiate galling in a forming process, some conditions have to be satisfied. One of the 
conditions is direct contact between tool and workpiece material. Van der Heide [20], [21], 
[22] uses this condition in the case of lubricated deep drawing of sheet metal. The 
hypothesis in this work is: "Galling initiation in lubricated sheet metal forming processes 
occurs at asperity level as a result of the fact that the lubricant's critical temperature is 
exceeded, due to frictional heating". Based on this hypothesis a model is formulated. The 
model focuses on asperity level. The asperities which are in contact are determined. In 
these asperity contacts the flash temperature is calculated as a balance between heat 
generated due to friction and carried away by conduction of the sheet and tool material and 
convection of the sliding sheet. 
In [20] the asperities are assumed to be ellipsoid shaped. The contact spots have an 
elliptical shape with dimensions a and b, respectively the radii in sliding direction and 
perpendicular to it. 
The generated heat q in the contact spots is determined as follows: 

 vFfq n ⋅⋅=  (2.11) 

In this relation f is the coefficient of friction, Fn the normal force on the asperity and v the 
velocity difference between the two contact surfaces. Fn will be calculated as given in 
equation (2.8) multiplied by 0.5, because only the frontal half of the asperity is in contact. 
The friction coefficient f is calculated by the relations given by Challen and Oxley [10]. 
These relations are given below, where the subscripts pl, w and c respectively point to the 
ploughing, wedging and cutting regime: 
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with: 
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The flash temperature Θ, in fact temperature rise, is proportional to the generated heat and 
reciprocal with the thermal conductivity K. So: 

 Kq /~Θ  (2.13) 

To calculate the flash temperature, a relation of Bos [4], [5] is used in which the conduction 
and convection of heat is combined. The conditions of deep drawing are assumed. The 
asperities of the tool have no velocity, so are continuously in contact. So, the tool is only 
able to transport heat out of the contact by conduction. The sheet material slides over the 
tool. Besides the conduction, this sliding contributes to the convection of heat out of the 
contact. For these conditions the following relation is found: 
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The subscripts tool and sheet refer to each body in contact. θsheet is defined as: 
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In which κ is the thermal diffusivity of the sheet material, defined as K/ρcp. Further: 
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 ab /=ϕ  (2.16) 
 ( ) ( ) 5.21exp5.0 −−= ϕϕλ  (2.17) 
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In the last relation K(n) is the complete elliptic integral of the first kind with modulus n. 
For every asperity contact the flash temperature can be calculated using equations (2.14) to 
(2.18). If the lubricant's critical temperature is exceeded, a condition is satisfied to cause 
galling. The next condition which is used in [20] is that an asperity contact is in the wedge 
regime, an assumption which is used in the growth model of De Rooij [39], a model which 
is described in section 2.3.2.  

2.3.2 Lump growth model 
Lump growth in deep drawing contacts is modelled by De Rooij [39], [40]. The proposed 
model describes the lump growth on asperity level. The model is based on the wear mode 
diagram of Challen and Oxley [10], see section 2.2. 
In [39] it is assumed that material transfer will not occur on all contacting summits, but 
only on summits which are in the wedge regime. In the ploughing regime no material 
removal by the sliding tool asperity occurs, so no lump growth on the tool will occur. The 
other regimes produce wear debris, which is, in principle, available for material transfer. 
However, wear debris will most likely be transferred to the low parts of the tool surface and 
not to the most critical spots, the asperities. Besides this, transferred material will not be 
very strongly fixed to the tool surface, because of oxidation layers and other factors 
inhibiting adhesion. For this reason in [39] the wedge-formation is taken into account, 
because in this regime a strong adhesion may result from the generation of virginal, 
unprotected contact surface during wedge-formation. 
It is assumed that only a fraction m of the material that wears off from the sheet in the 
wedge regime attaches to the tool summits. From this assumption the following relation for 
the lump growth (height increase) ∆s is derived: 
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In equation (2.19) Vwear is the volume of the material that wears off in the wedge regime 
and Asummit gives the surface area of the summits on which the material of Vwear is deposited. 
The fraction m is assumed to be proportional to the adhesion force Fa: 

 m ~ Fa (2.20) 
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Different types of adhesion regimes exist. In this model two regimes are taken into account, 
which results in: 

 
( )

( )
( )

( )











−

∆
>−

∆
−

∆
<−

=

s
s

s
s

a

hs
EHhs

H
E

hs
EHhsH

F

βπ

γ
β

γ
βπ

γ
βπ

2
2 if22
2
2 if2

*
2

*

*
2

 (2.21) 

In this relation s is the summit height, hs the nominal surface height, β the summit radius, 
∆γ the specific adhesion energy and E* the reduced modulus of elasticity. 
The wear volume in the wedge regime derived from the wear rate given by Challen and 
Oxley [10] gives the following: 
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with: 

 
33

Hk =  (2.22b) 

In this relation is θ the attack angle, k the shear strength of the wearing material and lslide a 
certain sliding distance. 
It is assumed that due to material transfer the asperity grows in such a manner that β 
remains constant. This is implemented as a semi-spherical asperity lift-up with a value ∆s 
from the surface, which results in a summit area of: 

 2πβ=summitA  (2.23) 

Using relations (2.22a) and (2.23) in (2.19) gives: 
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The fraction m as given in equation (2.19) is replaced by m2⋅Fa/lslide in equation (2.24). 
According to equation (2.20), m is proportional to Fa. Assuming that m is only a function of 
Fa, m2/lslide becomes a constant. For a product where the sliding length already is 
determined by the sliding length, m2 becomes a constant as well. 
Relation (2.24) has to be calculated for every summit in the wear regime. In this way, an 
incremental change over the whole surface area of interest can be calculated. The next step 
is to repeat this action a number of time steps, to get the development of the lump growth in 
time. In [39] this development is presented as the change of the summit height density 
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function. Likewise, the model can be implemented for a set of summits, instead of a summit 
height density function. In the case of a set of summits it can be combined with the 
initiation model of section 2.3.1. In that situation, both the effect of critical temperature on 
the lubricant and the lump growth itself will be taken into account. 

2.4 Summary 
The contact between workpiece and tool is discussed on the different length scales, that is 
on macro, meso and micro scale, in particular the effect of roughness. The contact stresses 
as well as deformations on each scale were analysed. With respect to galling, models are 
investigated that concern the initiation of galling and the lump growth. 
The objective of this research is the development of a Galling Performance Indicator, as 
depicted in chapter 1. For this development the lump growth model of De Rooij will be 
extended. The model of De Rooij has only a one dimensional lump growth, namely, growth 
in height, as given in equation (2.24). In chapter 3 experiments will be presented that show 
not only lump growth in height, but also in frontal direction. This effect will be modelled in 
chapter 4 for the single asperity case. 
 



 

3 Material transfer on a single asperity scale: 
experiments 

In this chapter experimental work will be presented which is used for studying the 
behaviour of a hard metal asperity that scratches into a softer material. In a deep drawing 
process, this represents on micro scale the situation in which material transfer from the soft 
workpiece material to the hard tool asperity may take place. The development of a 
dedicated setup and the experiments will be discussed in this chapter. 
In chapter 2 different scales have been discussed. For determining the tribological 
properties and finally the determination of the galling sensitivity, all the scales have their 
own role. The larger scale creates the environment and the input values for the smaller 
scale. The macro scale is the scale with values related to deep drawing FEM simulations, 
the meso scale requires information from the macro scale and from the roughness texture as 
well as the material properties. The micro scale is the scale where galling actually takes 
place. At that scale, the material adheres to the counter surface. Therefore, the micro scale 
is the scale of interest for experiments. In the experiments, a single asperity of tool material 
scratches on sheet material. The results obtained on the micro scale will be used to 
determine the galling performance on the meso scale, because on this scale the interactions 
of all the asperities in a certain area can be taken into account. The results on the meso scale 
can be mapped on the macro scale, which results in a galling risk map for a product. In this 
chapter the experimental setup will be described in section 3.1, the used samples and their 
properties in section 3.2, the actual experiments with their results in section 3.3. This 
chapter will end with the conclusions from the experiments in section 3.4. 

3.1 Experimental setup 

3.1.1 Ploughing Asperity Tester 
To study the contact in a deep drawing process at a single asperity scale, a dedicated tester 
has been developed. In the following, this tester will be called Ploughing Asperity Tester. 
The main aspects of the tester will be discussed below. 
In deep drawing the two contact bodies have different properties. The tool surface is a hard 
surface which comes into contact with the workpiece during every production cycle. The 
sheet surface has a lower hardness than the tool. The sheet only comes into contact with the 
tool for the duration of one production cycle. The Ploughing Asperity Tester is depicted in 
figure 3.1a. The tester is of the type pin-on-flat and has some special properties. Some 
characteristics of the device are: 
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– The scratch tracks are in a straight line. 
– The load of the pin can be controlled actively. 
– It is possible to make a number of scratches next to each other, see figure 3.1b. 

These characteristics give the tester some important properties. The straight line scratch 
tracks generate scratches of a restricted length l. The total scratch length of a scratch pin 
can be extended by repeating this length n times. This gives the possibility of always 
having fresh contact material on the flat contact body, by doing every track next to each 
other, instead of in the same track. 
In the experiments the tool is represented by a scratch pin of tool steel, sample A in figures 
3.1 and 3.2. For sample B, a piece of sheet metal is used. Sample A has a spherical shaped 
tip with a radius in the order of a single roughness asperity of the tool. Sample A makes 
straight tracks side by side on sample B, in order to have always a fresh sheet metal surface 
in the contact, as in deep drawing, where a sheet only makes contact during one production 
cycle. This makes the Ploughing Asperity Tester much more close to the actual situation on 
micro scale of a deep drawing process than a standard pin-on-disk tester. 

To fulfil its tasks, the Ploughing Asperity Tester is equipped with actuators and 
measurement sensors. A schematic view of the device is given in figure 3.2. To move the 
samples relative to each other, the flat sample B is placed on a xy-table. This table is built 
by perpendicular stacking of two linear stages. The scratch sample A is mounted on the 
beam, that is driven by two actuators in series. The coarse displacement in z-direction is 
done by a linear stage (as used in the xy-table), this is shown in figure 3.2a. The small 
displacements in z-direction are done by a piezo, see figure 3.2b. 

  
a b 
Figure 3.1. Ploughing Asperity Tester. A photo of the device (a) and a schematic view of 
the scratch tracks (b). 
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Some basic specifications are given in table 3.1. Some remarks will be made on these 
values: 

– The area that can be used for fresh contact on the flat sample, is the track length 
times the track area width. In the case of scratch track width in the order of 0.1 
mm, a distance between the tools ∆y of 1 mm after every scratch in x-direction is a 
reasonable distance, considering effects such as shoulder formation. In this manner 
a total scratch length of 50 × 50 mm = 2.5 m can be made on a sample of 
70 × 70 mm. 

– The maximum normal force of 50 N is the absolute maximum including the 
fluctuations on the signal. That means that the practical maximum nominal normal 
force is about 30 or 40 N, depending on the measurement conditions. 

– The velocity given of 50 mm/s is the maximum possible velocity of the device. To 
get a more stable force controlled contact situation, a velocity in the order of 1 
mm/s or lower has to be chosen. 

  
a b 
Figure 3.2. Schematic views of Ploughing Asperity Tester. The large displacements are 
done by linear stages (a). A detail of the beam with the actuator piezo for small vertical 
displacements of the scratch sample and the measurement piezos for the normal and the 
friction force (b). 'A' is the scratch sample, 'B' the flat sample. 

Property Maximum value 
Track length 50 mm 
Number of tracks 50 
Normal contact load 50 N 
Scratch velocity 50 mm/s 
Table 3.1. Specifications of Ploughing Asperity Tester. 
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3.1.2 Load control and contacts 
For performing the experiments, the Ploughing Asperity Tester control software and 
samples with sample holders have been developed. The developed software fulfils the 
following tasks: applying a normal force controlled contact between the sample that 
represents a single asperity of the tool and the sheet material, steering the scratch movement 
of one sample over the other and saving the measured normal and tangential forces. The 
sample holders are developed for holding the single asperity sample and the piece of sheet 
metal. 

Control software 
To improve the usability of the Ploughing Asperity Tester, software is developed to control 
the tester. The tester is an in-house developed device, which is assembled from, among 
other things, a number of actuators and sensors that act as separate hardware components. 
These components each have their own peripheral equipment that communicates with a 
computer. The control software is created in LabView, a programming environment for 
creating virtual instruments. In LabView, the focus is on the design of the user interface and 
on the communication with and control of lab instruments. Two types of functionality of 
the tester will be discussed in more detail below, respectively the force controlled loading 
of the samples and the parallel track functionality. 
Displacement controlled experiments demand very flat samples. Further, any tilt in the 
sample has to be avoided. Any waviness or tilt results in a fluctuating normal force during 
scratching due to deformation of the tester, see figure 3.3a. Polished samples are often 
really flat. Sheet metal is not flat enough to get a (more or less) constant normal force or 
indentation depth during scratching. A fluctuating indentation depth has a strong influence 
on the attack angle. The scratch pins that have been used have a tip radius. Using the 
dimensions as given in figure 2.7 the following derivative can be found, with θ in radians: 
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Using equation (3.1) the effect of displacement controlled experiments on not-flat samples 
can be investigated. In most experiments a tip radius of β = 50 µm is used. For θ = 45°, that 
means δ = 15 µm, dθ/dδ = 1.6° µm−1. This derivative increases for decreasing values of δ 
and goes to infinite for δ = 0. The effect of a not-flat sheet is compensated a bit by the 
stiffness of the tester, which is in z-direction at the contact spot of the samples about 102 N 
mm−1. Normal forces are in the order of 1 N, so the effect of stiffness, or better, the 
flexibility effects, is insignificant. In practice, over a track length of 50 mm, a flatness 
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tolerance for a sheet metal surface (for tilt and waviness) within 10 µm is hard to realize, so 
force feedback is necessary to apply a constant contact load. The developed control 
software is able to communicate with all the actuators and sensors of the tester. This 
property is used to give force feedback to the actuators that bring the samples in contact. In 
this manner a closed loop is created between the measured normal force and the actuators 
acting in normal direction. In figure 3.3b the action of the normal actuators is shown by the 
dashed line and its deformation consequences on the tester. In figure 3.3c the result of a 
measurement is given that shows a constant normal load (regarding the low frequency 
component) due to the force feedback control. 
For simulating the deep drawing contact, a fresh sheet surface is demanded. This is realized 
by the parallel track function, which moves the y-stage a small distance ∆y after every 
scratch made in x-direction. 

  
a b 

 
c 
Figure 3.3. Displacement (a) and force controlled (b) scratching on a tilted and wavy 
surface and its deformation consequences. The beam on which the scratch sample is 
mounted has a stiffness, here represented as a torsion spring. The dashed line describes the 
track of the rotation point of the beam. Applying force control results in a constant normal 
force as given in the example measurement (c). 
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Samples and sample holders 
For the Ploughing Asperity Tester both contact samples have been developed and for the 
lower contact body, the piece of sheet metal, also the sample holder. 
The scratch pin is made of tool material WN1.2379. The tip geometry and the material of 
the pin are prescribed, the rest can be adapted for a standard holder. The sample is designed 
for using a holder that is suitable for samples with a shaft of 6 mm diameter. The sample is 
given in figure 3.4a. Details about the material and the tip geometry are given in section 
3.2. 
The lower contact body in the experiments is a piece of sheet metal. A special holder for 
this sample is designed. The bottom side has to be mounted on a linear stage, the y-stage as 
given in figure 3.2a. The mounting possibilities are determined by the hole pattern on the 
linear stage. At the top side of the holder a piece of sheet metal has to be clamped. A 
sample size of 70 × 70 mm is chosen. This gives the possibility to use the full stroke 
lengths of the linear stages (50 mm) and a margin of 10 mm remains around the 
measurement area that can be used to clamp the sample. The sample holder is shown in 
figure 3.4b. 

3.2 Samples used in the experiments 
The purpose of the experiments is to study the interaction of a tool asperity in contact with 
sheet metal. The experiments are performed with the Ploughing Asperity Tester as 
described in section 3.1. The samples and contact conditions are chosen in such a manner, 
that the contact agrees in many respects with the contact in the deep drawing process. 
Further details of the parts used in the experiments are given in the following sections. 

 

 

a b 
Figure 3.4. Dimensions of scratch pin (a). At the conical tip a radius is polished with a 
prescribed radius that represents an asperity. The holder for the sheet material with its 
clamping system (b). 



3.2 Samples used in the experiments 

 

35

3.2.1 Tool asperity 
The tool asperity is represented by the scratch pin in the Ploughing Asperity Tester. This 
sample is labelled as A in figures 3.1 and 3.2 and its shape is given in figure 3.4a. In the 
figure only the macro geometry is given. The essential part of the pin is the tip of the cone. 
To approach the contact of a single tool asperity during deep drawing, the material and the 
geometry are chosen close to a tool asperity. 
After the pin is made and hardened, the conical area of the hardened pin is finished with a 
spherical tip by grinding and polishing. The pins are polished in two batches. One batch has 
a tip radius of 50 µm, the other of 100 µm. 

3.2.2 Sheet material 
The focus within this research is on one type of aluminium sheet and zinc coated steel 
sheet. These materials are used in the experiments. The aluminium sheet is AA5182 EDT 
and the zinc coated steel sheet is DX54D Z EDT. The materials have the same type of 
surface texture, given by the abbreviation EDT (electrical discharge texturing). This is an 
isotropic texture and is chosen to avoid orientation effects of the texture. 
The materials are commercially available. No modification of the material is applied. From 
a piece of sheet metal a sample is cut of 70 × 70 mm, to fit into the holder shown in figure 
3.4b. The sheet material may contain a layer of conservation oil, which is why a sample is 
always degreased before an experiment. In the case of lubricated experiments, after the 
degreasing step the lubricant is applied to the surface. Details about degreasing and 
applying lubricant are given in section 3.2.3. 
Below, data will be given of the sheet materials that are used in the experiments. In table 
3.2 properties are given of DX54D Z EDT. SEM pictures of the surface texture and a cross 
section of zinc layer are given in figure 3.5. 

    

Property Value 
Rq 1.0 µm 
Bulk hardness 81 HV0.2 
Zinc layer thickness 14 µm 
Zinc layer hardness 46 - 57 HV0.005 
Table 3.2. Properties of DX54D Z EDT. 
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In table 3.3 properties are given of AA5182 EDT and in figure 3.6 a SEM picture is given 
of its surface texture. 

    

  
a b 
Figure 3.5. SEM pictures of DX54 Z EDT sheet material. The surface texture top view (a) 
and a cross section of the sheet material near the zinc layer (b). 

Property Value 
Rq 1.4 µm 
Bulk hardness 68 HV0.2 
Table 3.3. Properties of AA5182 EDT. 

 
Figure 3.6. SEM picture of the surface texture of AA5182 EDT. 
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3.2.3 Lubricant 
A part of the experiments has been performed with a lubricant on the sheet material. In 
sheet metal forming processes the main function of the lubricant is to control the friction in 
the sliding contact between the sheet and the tools. Another function of the lubricant is to 
avoid or reduce galling by preventing or reducing direct contact between the sheet metal 
and the tools. Only one type of lubricant has been used, namely Quaker N 6130. Quaker N 
6130 is a deep drawing lubricant with rust preventive functionality. 
Before performing the experiments the samples, both the scratch pin and the sheet material, 
are degreased. The samples are degreased using acetone and subsequently dried with a 
tissue. Next, an oil film is applied on one side of the sheet sample. The sample is drained by 
holding it in a vertical orientation for some hours. The amount of oil is determined by the 
difference of the mass before and after applying the lubricant. In this manner a typical 
amount of lubricant is about 5 g/m2. 

3.3 Experiments 

3.3.1 Experimental strategy 
To study the galling behaviour a number of experiments have been performed. To get 
insight in the material transfer behaviour a number of parameters have been varied. Most 
parameters are already discussed in section 3.2, namely, the tip radius, the sheet material 
and whether the contact is lubricated or not. Further, the scratch length and the normal force 
have been varied. The normal force causes the penetration of the scratch pin in the sheet 
material and so the change of the attack angle. The sliding velocity is kept constant on 1 
mm/s in all experiments. 
First, results of the lubricated experiments will be shown. These results are used to 
investigate the effect of lubrication and the agreement with the initiation model as given in 
section 2.3.1. Next, the lump growth is investigated in more detail under degreased 
conditions. 
The range of normal forces that is applied to the scratch pin is determined in the following 
manner. According to the models given in the sections 2.3.1 and 2.3.2, galling happens in 
the wedge regime. The possible attack angles of this regime are in the range of 0 to 45°. 
The maximum possible attack angle that can be caused by the scratch pin is 45°, this from a 
geometrical point of view, so experiments can be performed on every point in the wedge 
regime. The normal force needed to create a certain attack angle will be determined on the 
basis of the geometry of the tip and the hardness of the sheet material, using equation (2.5). 
In the last part of equation (2.5) a summit is assumed to be a paraboloid. In the case of a 
spherical shape, the following relation is found for the normal force: 
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 θβππ 222 sin5.05.0 HHaFn ==  (3.2) 

In equation (3.2) the correction factor 0.5 for the fully plastic behaviour is used, because 
during scratching of the pin, only the frontal part of it is in contact. 

3.3.2 Lubricated experiments 
A number of lubricated experiments are performed. The type of lubricant and the method to 
apply the lubricant to the sheet material is discussed in section 3.2.3. The experiments are 
performed on zinc coated steel sheet and on aluminium sheet material. 

Aluminium sheet 
Experiments are performed using a conical scratch pin with a tip radius of 50 µm. In the 
different experiments, the normal force is varied. The range of normal forces is from 0.2 N 
to 2.5 N. The corresponding attack angles can be found by using equation (3.2). The 
hardness of the material is given in table 3.3. A hardness given in MPa can be 
approximated by multiplying the Vickers hardness with 10. This results in a hardness of 
680 MPa. Then the range of attack angles becomes 16 to 45°. For forces above 1.3 N, the 
spherical part of the scratch pin is fully penetrated into the sheet material, so the conical 
part comes in contact with the sheet, resulting in the attack angle of 45°. For this series of 
experiments the scratch track is 20 mm. 
After the experiments the pins are investigated for material transfer. For all values of the 
normal force it has been observed that material was transferred to the scratch pin. The 
adherence of the transferred material to the pin was not strong enough to survive an 
ultrasonic cleaning treatment. Only once did a layer of about 1 µm remain on the pin after 
an ultrasonic cleaning treatment and cleaning it with a tissue. An image of the pin, made by 
an optical microscope, is shown in figure 3.7. No direct relation is found as a function of 
the normal force and the strength of the transferred aluminium layer. 
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Zinc coated steel sheet 
Another set of experiments has been performed with zinc coated steel sheet. The scratch pin 
is of the same type as given before for experiments with aluminium sheet and the same 
range of normal forces is used. The hardness of the zinc layer as given in table 3.2 
corresponds to about 500 MPa. The range of attack angles becomes, using equation (3.2), 
16 to 45°, where 45° is reached for a normal force of 0.98 N. So, for the normal force range 
where the spherical part of the scratch pin is not fully penetrated in the sheet material, the 
attack angle has a higher value for a given normal load, compared to the case of aluminium 
sheet, because of the lower hardness of the zinc layer. This calculation of the attack angle is 

  
a b 
Figure 3.7. A scratch pin that ploughed through lubricated AA5182 EDT sheet material (a). 
The scratch length is 20 mm, the normal force 2 N. The pin is already ultrasonic cleaned, 
but still not cleaned by hand with a tissue. In spite of the lubrication, aluminium is 
transferred to the pin and this transfer layer survived the ultrasonic cleaning. In this figure 
the pin is positioned concentric with the circle segment. The part of the surface above the 
two spikes on the circle segment is the original pin surface that was not in contact. Below 
the spikes a 'rough surface' is visible, which is the transferred material. The image is only 
partly in focus, due to the small depth of field of the used optical microscope.  The grey 
parts near the bottom of the image that are out of focus show transferred aluminium. The 
orientation of the microscope with respect to the pin is shown by the arrow with eye symbol 
(b), which also shows how the pin is oriented during the experiment. The scratch direction 
of the pin is given by the arrow of the velocity v. 
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only true for small penetrations where only the hardness of the zinc layer is of importance. 
For larger penetrations, in the order of the zinc layer thickness, the hardness of the steel 
substrate also has to be taken into account. Because of the small differences in results of the 
experiments, a better estimation of the attack angle taking the layered structure into account 
will be omitted. 
On the scratch pins used in the experiments with lubricated zinc coated steel sheet no 
transferred material can be observed. Only wear particles of the zinc layer can be found 
near the scratch track for the experiments with normal forces of 1 N and above. The 
contacts with these applied normal forces are in the cutting regime, which explains the 
formation of these wear particles. Images of some pins that are used in these experiments 
are shown in figure 3.8. After almost every measurement the microscope images look like 
figure 3.8a. An exception is shown in figure 3.8b, but after degreasing this pin also looks 
like figure 3.8a. In the case of figure 3.8b, there is only a weak adhesion due to the 
lubricant that adheres the wear particles to the pin. 

  
a b 
Figure 3.8. Scratch pins that ploughed through lubricated DX54D EDT sheet material. In 
one situation no material is transferred and the colour is slightly changed only at the 
contact spot (a). In another situation, zinc particles are visible (b), but after degreasing the 
pin, the wear material is removed. The orientations of sliding direction of the pins and the 
camera position relative to the pins are as in figure 3.7. 
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Discussion of the lubricated experiments 
From the lubricated experiments that are performed, a big difference can be observed in the 
material transfer behaviour between aluminium and zinc coated sheet material. In the case 
of zinc coated sheet material, in a number of experiments wear particles are found, but no 
material transfer takes place. In the case of the aluminium sheet material transfer can be 
observed. 
In the case of lubricated contacts, the flash temperature in the contact can play a role as is 
presented in section 2.3.1. An estimation of the flash temperature can be made using 
equation (2.14). To make this estimation, equation (2.14) will be adapted. The coefficient 
of friction times the normal force can immediately be replaced by the (measured) friction 
force. The scratch pin has a conical shape, so the assumption that the contact bodies are half 
spaces is not justifiable. Therefore, for the first estimation, the conduction to the scratch pin 
will be omitted. Further, for simplicity the convection part of the sheet material will be 
omitted. These adaptations result in the following simplified relation for the flash 
temperature: 
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The thermal conductivity of aluminium AA5182 is 126 W m-1 K-1. The maximum value of 
Fw in the experiments is 3 N and the minimal values of the radii a and b are 7 and 14 µm. 
The tip of the scratch pin has a spherical shape and therefore in each direction the radius 
should be the same, but here, the value of a is half of the value of b. During scratching only 
the frontal half of the scratch pin is in contact, therefore the value of radius a is 
compensated by a factor 0.5, as described in more detail in [20]. Using these data and 
equation (2.18) for the calculation of Λ, equation (3.3) gives a temperature rise of 0.88 K. 
In this estimation, omitting the convection and the thermal conductivity of the scratch pin, 
it becomes clear that the thermal effect is negligible. From this thermal analysis, it follows 
that thermal effects are not the reason for material transfer in the case of aluminium sheet. 
In practice, the used lubricant is used as a deep drawing oil for uncoated and zinc coated 
steel sheet. Probably, the oil cannot attach strongly enough to the aluminium surface, so it 
is not able to form a boundary layer between the scratch pin and the sheet material. From 
these experiments it follows that a proper lubricant is essential to avoid material transfer, 
[20]. 

3.3.3 Unlubricated experiments 
In section 3.3.2 experiments are presented for lubricated contacts. Experiments with the 
same conditions as in section 3.3.2 are performed, but now with unlubricated contacts. 
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Only the degreasing handling of the samples is done as given in section 3.2.3. Like in 
section 3.3.2, these experiments are performed on zinc coated steel sheet and on aluminium 
sheet material. 
In the case of a degreased surface a strong adhesion can occur between the contacting 
bodies. Due to the plastic deformation, oxide layers may break, which result in a direct 
contact between metals and hence even in a stronger adhesion. Assuming that, due to these 
effects, the contact interface has the same shear strength as the softest contact body, then 
fHK = 1. Due to the pin geometry θ ≤ 45°. For these conditions of fHK and θ, the contact is in 
the wedge regime according to figure 2.10. 

Aluminium sheet 
The set of experiments with unlubricated aluminium sheet are comparable with the set of 
experiments in the lubricated case. Beside the use of scratch pins with a tip radius of 50 µm 
also samples with a tip radius of 100 µm have been used. 
The results of the experiments are presented in a number of steps. First, two experiments 
are presented that both show material transfer to the scratch pin, but the amount of 
transferred material and the geometry are totally different, although the conditions are 
almost the same. Thereafter the effect of scratch length and tip radius will be shown. 
The next two experiments that will be shown are performed with a scratch pin with a tip 
radius of 50 µm. These scratch pins are loaded with a normal force of 1.25 N. This normal 
force results in an (initial) attack angle of about 43°. 
The first of these two experiments is performed in two steps. In both steps a scratch track is 
made of 45 mm. After each track an image is made of the scratch pin using SEM. These 
images are given in figures 3.9 and 3.10. 
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Figure 3.9. SEM picture of a scratch pin of WN1.2379 after 45 mm of sliding with 
transferred aluminium from AA5182 EDT sheet material. The very smooth parts are the 
polished surface of the scratch pin, the rough surface is from the transferred aluminium. 
The moving direction of the pin is given by the arrow. 
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In the figures 3.9 and 3.10 it can be observed how a lump develops on the scratch pin. The 
lump grows slightly in height, but mostly in frontal direction. A schematic view of this 
lump development is shown in figure 3.11. Due to the lump growth in frontal direction the 
attack angle changed significantly during scratching. For the case as given in figure 3.9, the 
attack angle θ is changed from about 43° to about 4°. The lump growth in height ∆s is 
about 1.5 µm. For the situation given in figure 3.10 ∆s is increased to about 10 µm. So, two 
effects can be seen. At first, the growth in height is dependent on the sliding length and 
secondly, the attack angle changed in the initial stage of the lump growth process. 

 
Figure 3.10. SEM picture of a scratch pin of WN1.2379 after 90 mm of sliding with 
transferred aluminium from AA5182 EDT sheet material. The very smooth parts are the 
polished surface of the scratch pin, the rough surface is from the transferred aluminium. 
The moving direction of the pin is given by the arrow. 
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In the second experiment, again a scratch track is made and an image is made with the 
SEM, see figure 3.12, but now the result looks really different compared to the figures 3.9 
and 3.10. In the experiment shown in the figures 3.9 and 3.10 a lump develops on the 
scratch pin. However, the galling process is a dynamic process consisting of lump growth, 
but also of breaking off of these lumps. This effect can be observed in figure 3.12. 
Comparing figure 3.12 with 3.9 a huge difference can be observed, when focussing on the 
amount of material that is transferred. On both figures it is clear that only the frontal part of 
the scratch pin comes into contact. The contact region is in figure 3.9 the left half and in 
figure 3.12 this is the right half, but this difference is caused by the different orientation in 
the SEM. To investigate the difference in transferred material to the scratch pin the sheet is 
also taken into account. In figure 3.13 a photograph is shown of the sheet made by a 
confocal microscope. In this figure the scratch track is in line with the dashed line. At the 
bottom side of the dashed line the end of the scratch track is visible and in upward direction 
the wear debris that is pushed in front of the scratch pin. The height profile of the dashed 
line is given in figure 3.14 with the scratch pin fitted in the profile. Most of the material that 
is transferred to the scratch pin according to figure 3.9 remains on the sheet in the case 
shown in figure 3.12. Only a small fraction adheres strongly enough to transfer to the pin. 
During scratching, the wear debris of the sheet material somehow adhered to the scratch pin 
and peeled off when the pin was lifted from the sheet material. A trace of this peeling off 
can be found on the profile at 27 µm < x < 50 µm, where the profile overlaps the scratch 
pin. This overlap originates from material that is pulled in upward direction. The crack that 
is formed below the surface cannot be measured and is therefore not shown in the profile. 
During lifting the pin from the sheet, the transferred lump breaks at the dashed line on the 
lump as shown in figure 3.11. 

 
Figure 3.11. Schematic view of lump formation during the scratch experiment. The lump 
grows in height with ∆s and in frontal direction, with the consequence that a new contact 
angle θ is formed. The arrow indicates the moving direction of the scratch pin. 
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Figure 3.12. SEM picture of a scratch pin of WN1.2379 after 20 mm with transferred 
aluminium from AA5182 EDT sheet material. The very smooth parts are the polished 
surface of the scratch pin, the rough surface is from the transferred aluminium. The moving 
direction of the pin is given by the arrow. 

 
Figure 3.13. A photograph made by a confocal microscope of the AA5182 EDT sheet 
material. At the bottom side of the dashed line is the end of a scratch track with the scratch 
pin that is shown in figure 3.12. Around the dashed line in upward direction is wear debris 
that is pushed in front of the scratch pin. The moving direction of the pin is given by the 
arrow. 
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In the first experiments with unlubricated aluminium sheet that are presented above, an 
impression is given of the dynamic behaviour of the lump development. In almost every 
experiment that is performed, the lump breaks from the scratch pin as shown in figure 3.12. 
Now, the effect of the length of the scratch track will be investigated. Again, experiments 
are performed with a scratch pin with a tip radius of 50 µm, which is loaded with a normal 
force of 1.25 N. The track lengths are 1, 2, 10 and 20 mm. Optical microscope pictures of 
these experiments are shown in figure 3.15. 
Although most material breaks from the pin during lifting from the sheet material, it 
follows from figure 3.15 that a longer scratch track results in more material transfer. From 
these experiments, it is difficult to find a well defined relation between the scratch track 
length and the amount of material transfer. The effect of more material transfer due to a 
longer scratch length should be interpreted as a trend. Sometimes large deviation from this 
trend can be found. Such a deviation can be found in the following set of experiments, 
where a tip radius of 100 µm is used. 

 
Figure 3.14. Height profile belonging to the dashed line on the surface of figure 3.13 
(graph) with the scratch pin fitted on the profile (grey area). The moving direction of the 
pin is given by the arrow. 
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The last set of experiments with aluminium sheet will show the effect of the tip radius of 
the scratch pin. Now, scratch pins are used with a tip radius of 100 µm, which is loaded 
with a normal force of 5 N. The radius of the tip is increased with a factor two, so the 
normal force has to increase with a factor four to reach the same attack angle. The track 

  
a b 

  
c d 
Figure 3.15. Optical microscope pictures of a scratch pin of WN1.2379 with a tip radius of 
50 µm after 1 (a), 2 (b), 10 (c), 20 (d) mm sliding with transferred aluminium from 
AA5182 EDT sheet material. The very smooth parts are the polished surface of the scratch 
pin, the rough surface is from the transferred aluminium. The pins moved in downward 
direction. 
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lengths are 1, 2, 10 and 20, 45 and 90 (2×45) mm respectively. Optical microscope pictures 
of these experiments are shown in figures 3.16 and 3.17. 

    

  
a b 

  
c d 
Figure 3.16. Optical microscope pictures of a scratch pin of WN1.2379 with a tip radius of 
100 µm after 1 (a), 2 (b), 10 (c), 20 (d) mm of sliding with transferred aluminium from 
AA5182 EDT sheet material. The very smooth parts are the polished surface of the scratch 
pin, the rough surface is from the transferred aluminium. The pins moved in downward 
direction. 
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For the experiments performed with a scratch pin with a tip radius of 100 µm, most of the 
material breaks from the pin during lifting from the sheet material, like in the experiments 
with the pins with 50 µm tip radius. 
A clear difference can be observed between the behaviour of the experiments with 50 and 
100 µm tip radius. For some scratch lengths, the amount of transferred material is of the 
same order, when focussing on the fraction of the contact area that is covered. But for other 
scratch lengths, the amount is different. This effect is clearly visible in figure 3.17a, where 
after 45 mm of scratching almost no transferred material is left on the pin. But for the cases 
of about half of the scratch length (20 mm, figure 3.16d) and the double scratch length (90 
mm, figure 3.17b) the amount of transferred material is more or less in agreement with the 
trend that can be seen in the experiments with the 50 µm tip radius. 

Zinc coated steel sheet 
A number of experiments with unlubricated zinc coated steel sheet are performed. 
Experiments performed with scratch pins with 50 µm tip radius are presented. The scratch 
pins are loaded with a normal force of 1.25 N. For this set of experiments, only the track 
length is varied. 

  
a b 
Figure 3.17. Optical microscope pictures of a scratch pin of WN1.2379 with a tip radius of 
100 µm after 45 (a), 90 and (2×45) (b) mm of sliding with transferred aluminium from 
AA5182 EDT sheet material. The very smooth parts are the polished surface of the scratch 
pin, the rough surface is from the transferred aluminium. The pins moved in downward 
direction. 
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Before showing other results of these experiments, a SEM picture of a scratch pin with 
transferred zinc material is shown in figure 3.18. It is clear from this figure that the material 
transfer of zinc behaves differently than is the case with aluminium. The area of the tip that 
was in contact becomes visible, as seen by the dark print on the surface. The material 
remaining on the pin after it has been lifted from the sheet material is now situated at the 
parts of the contact area with a large local attack angle instead of at the top of the pin. 

A number of experiments have been performed in which the scratch length is varied. Three 
of the used scratch pins are shown in figure 3.19. The pin used for the experiment of 1 mm 
scratch length is omitted, because no material could be observed on it. The pin shown in 
figure 3.19b is as shown in figure 3.18. In figure 3.19a the same effect can be observed as 
described above for the pin shown in figure 3.18, namely that no zinc is at the top, only at 
the region with a large local attack angle. The pin shown in figure 3.19c has transferred 
zinc on the whole area that was in contact. This zinc layer has a geometry as shown in 
figure 3.11. So, also in the case of zinc coated steel a new effective attack angle θ is formed 
due to the transfer of zinc to the tool steel material. From a height measurement it follows 
that ∆s is about 0.4 µm and θ is 2° in the area indicated with A and 8° in the area indicated 
with B. 

 
Figure 3.18. SEM picture of a scratch pin of WN1.2379 after 10 mm of sliding with 
transferred zinc from DX54D EDT sheet material. The very smooth parts are the polished 
surface of the scratch pin, the rough surface is from the transferred zinc. The moving 
direction of the pin is given by the arrow. 
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Discussion of the unlubricated experiments 
For the unlubricated case, material transfer is observed in the experiments with aluminium 
sheet and zinc coated sheet. The effect of lubrication becomes clear, because zinc did not 
transfer in the lubricated experiments. Besides, aluminium adheres better to the scratch pin, 

  
a b 

 

 

c  
Figure 3.19. Optical microscope pictures of a scratch pin of WN1.2379 with a tip radius of 
50 µm after 2 (a), 10 (b), 45 (c) mm sliding with transferred zinc from DX45D EDT sheet 
material. The very smooth parts are the polished surface of the scratch pin, the rough 
surface is from the transferred zinc. The pins moved in downward direction. 
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because the transferred aluminium peels less easily for the unlubricated case compared with 
the lubricated one. 
As long as the adhesion is not optimal between the transferred material and the scratch pin, 
a difference can be observed in the way it breaks off from the pin. Once good adhesion is 
formed between the pin and transferred material, a similar kind of behaviour can be 
observed for both materials that are tested. A lump will be formed that grows in height and 
has an attack angle deviating from the original one, as shown in figure 3.11, which looks 
like a kind of equilibrium angle between the lump that forms and the plastic pressure of the 
deforming material. 

3.4 Conclusions 
– With the low speeds, when thermal effects still do not play a role, the lubricant 

protects the tool against direct contact under the condition that the lubricant is 
compatible with the contacting surfaces. No material transfer has been found for 
lubricated zinc coated sheet. It appears that the lubricant used, attached not well to 
the surface of AA5182 EDT to form a protective layer. 

– Transferred material is connected to sheet and tool during transfer. During lifting 
of the pin after the test from the sheet, material breaks at the shear layer inside the 
sheet material, but also on the interface between tool material and sheet material. 
When it breaks on a shear layer inside the sheet material a huge amount of 
material is transferred, otherwise only a fraction or totally no material is 
transferred. 

– For the unlubricated contacts a lump grows in height and in frontal direction. Due 
to this growth a new attack angle is formed in the contact. The new attack angle is 
in the order of 4° for aluminium and varying from 2° to 8° for zinc. 

– A trend can be observed that for longer scratch tracks more material transfers from 
the sheet to the tool. Individual situations can strongly deviate from this trend. 

– A larger radius of the tip of the scratch pin results in greater deviation in the 
amount of transferred material. 
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4 Material transfer and lump formation on a 
single asperity 

4.1 Introduction 
The phenomenon of galling is a dynamic process of lump growing and of lumps breaking 
off. In this process a number of steps can be distinguished. First, lumps grow on the tool 
material due to material pick-up from the sheet material. The lumps grow on the tool due to 
adhesion or mechanical locking on the interface. After formation of the lump, it has to resist 
the forces acting on it. Second, if the formed lumps are strong enough they can incur the 
risk of scratching in the formed products. 
In this chapter the focus is on the possibility that material transfers from the sheet to the 
tool and that the transferred material forms a lump that can resist the forces that will act on 
it. Models are derived for different cases of the material transfer. In section 4.2 the effect of 
interlocking due to sharp peaks is presented by a plastic upper bound model. The model is 
based on a pyramid shaped asperity. The model shows under what conditions material 
transfer can occur even in the case of lubrication, so a low strength of the interface. This 
model is applicable for material that is supported by an asperity, but cannot exceed the 
height of the original asperity, because it needs its strong 'back'. In section 4.3 and 
following sections, different aspects are presented that are used to formulate a lump growth 
model which is able to deal with lump growth in height. Further, it is implemented in such 
a way that it can deal with anisotropic surface geometries as is the case in many grinded 
tool surfaces. To deal with this geometry, an ellipse shaped asperity is formulated as a 

 
Figure 4.1. An hexagon fitted through an ellipse shaped base of an 
asperity. 
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polyhedron with a hexagon base. In figure 4.1 it is shown how this hexagon base fits a 
certain asperity with an ellipse shaped base. The model is based on mechanical stability of 
the formed lump. In section 4.3 the stability analysis is presented, based on the external and 
internal stresses of a rigid pyramid ploughing through a plastic deforming material. This 
section focuses on a pyramidal lump for reasons of simplicity. In section 4.4 adhesion is 
discussed. In section 4.5, in the first part of the section, the relation between adhesion and 
the lump growth volume is presented. In the subsequent subsection, the deposition of this 
volume is presented and in the last part the final geometry is determined on the basis of 
mechanical stability of the lump. 
In this chapter only a single asperity situation will be discussed. On a real surface, this takes 
place on a surface composed of a large number of asperity contacts. The translation to the 
multi asperity situation will be discussed in chapter 5. 

4.2 Interlocking on sharp peaks 
Interlocking is one of the reasons that makes material transfer possible. Interlocking of 
material takes place especially on sharp edges, such as edges of a scratch, or on asperities 
with steep slopes due to wear or manufacturing process. 
In this section, the case will be studied of a hard asperity ploughing through a plastically 
deforming and potentially adhering material. Of special interest is the phenomenon that a 
dead metal zone can be formed in front of the ploughing asperity. This can happen if this is 
energetically more favourable and is relevant for the similar case of a tool asperity 
ploughing through a sheet in a deep drawing process. 

4.2.1 Model background 
In this section a model will be formulated of a rigid pyramid shaped body, ploughing 
through a plastically deforming material. The model will be based on a plasticity model that 
uses an upper bound method. In this method a kinematic consistent plastic deformation 
field is defined. In general, a consistent deformation field has to be found, that consumes 
the minimal amount of deformation power. A simplified deformation field is formulated 
with a limited number of degrees of freedom. The values of these degrees of freedom are 
found by minimization of the deformation power that gives the best possible approximation 
for this simplified case. This strategy is presented by De Vathaire [45]. The model 
described in [45] will be used as a basis. In this model a rigid pyramid with a square base 
ploughs through an ideal plastic material, with an edge of the pyramid pointing in the 
ploughing direction. The geometry of the asperity and the deformation field is presented in 
figure 4.2. In [45] only one angle α is used. The distinction in αfr and αs will be used in the 
model discussed in section 4.2.2, to replace the square base of the pyramid by a more 
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general rhombus. The minimization of the deformation power determines the position of 
the vertices A and C. With the location of these vertices the plastic flow field is determined. 

Atkins [1] presents an alternative geometry for the ploughing body. There, the object that 
ploughs has a face in the ploughing direction. It results in a blunt front of the ploughing 
object, see figure 4.3. A dead metal zone LML'Q in front of face LML' acts as a 'sharp' tool. 
(The naming of the vertices is in agreement with [1]. The deviation compared to figure 4.2 
has no special meaning.) This model has an extra degree of freedom that has to be 
optimized. Beside the geometry of the shoulder, that is determined by the vertices L and P, 
the location of Q has to be found. This is done in the same optimizing process. 

 
a b 
Figure 4.2. Deformation field of the model of De Vathaire [45], its side view (a) and front 
view (b).  

 
a b 
Figure 4.3. Deformation field of the model of Atkins [1], its side view (a) and front view 
(b). Only the front face of the plough object is given by the thick lines. This face is the only 
face that is in contact with the plastic deforming material. 
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A model will be formulated, using the geometry as presented as given in figure 4.2 
combined with the possibility of the formation of a dead metal zone, as is given in figure 
4.3. This formulation is given in section 4.2.2. 

4.2.2 Model describing the formation of a dead metal zone 
From experiments presented in chapter 3, it follows that material will be pushed in front of 
a ploughing indenter as found by Schedin [41], [42]. This effect is modelled by an upper 
bound model of a rigid pyramid shaped asperity that under certain conditions can push a 
dead metal zone in front of it. The model of De Vathaire as shown in figure 4.2 is used as 
the basis. The idea of the dead metal zone as used by Atkins is added to the model, see 
figure 4.4. The asperity has two top angles: in frontal direction αfr and in sideward direction 
αs. In the model, the angle αs remains constant. The angle αfr has a minimum value αfr0, 
which is related to the original size of the rigid asperity, but can increase due to the dead 
metal zone, that acts as an extension of the asperity. From minimization of deformation 
power, the energetically most favourable situation will be calculated. 

In the model that is formulated, the plastic material moves in a set of rigid blocks along the 
sides of the pyramid. The plastic deformation only occurs at the faces that separate these 
rigid blocks. The material undergoes shear as it crosses the velocity discontinuity on these 
planes. In the negative y-space (the positive half space will be omitted due to symmetry) the 
two blocks that describe the deformation are the tetrahedron ABCD and the block of plastic 
material outside the deformation zone. The faces that divide the blocks and on which the 
plastic deformation occurs are ABD and BCD as given in figure 4.4. At face ACD power is 

 
a b 
Figure 4.4. Adapted deformation field of the upper bound model, its side view (a) and a 
cross section of the asperity and dead metal zone at the xy-plane (b). The field is like the 
one shown in figure 4.2, but the asperity is 'extended' with a dead metal zone. 
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consumed due to friction. The total deformation power is given by a summation of the 
plastic deformation power and the friction. This results in the following equation: 
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In equation (4.1), 0ur  is the velocity vector of the plastic deforming material outside the 

deformation area and ur  is the velocity vector in the block ABCD. The surface areas are 
given by AXYZ, where the subscripts X, Y and Z give the vertices of the triangular faces. The 
material parameters are the yield strength σy and m. The quantity m is defined as the ratio 
between the strength of the interface and the shear strength of plastic material, which in the 
literature is sometimes called the Tresca factor. This factor equals fHK as used in the model 
of De Rooij [39]. Only terms related to one side of the symmetry plane are given in the 
equation. To get the total deformation power, the terms are multiplied by a factor of two. 
Equation (4.1) is given in a compact form, containing only 'direct' quantities as velocities, 
surface areas and material parameters. In the calculations the quantities 0ur , σy and m are 

(taken) constant, the other quantities are variables used in the minimization process. These 
variables are not independent. The properties and the dependencies of the different 
variables are given below: 

– The equation is formulated in a number of mutually dependent variables. These 
can be expressed in two independent variables. The minimization process will be 
performed with the x and y-coordinate of vertex B. 

– Vertices C and D are determined by the indenter geometry and ploughing depth as 
given by h and αfr in figures 4.2 and 4.4. 

– Vertex A is dependent on αs, h and the y-coordinate of vertex D. Vertex A is 
located on an edge of the ploughing indenter, the location on this edge is 
determined by volume conservation. The volume of the material that comes out of 
the scratch groove should be equal to the volume of the formed shoulders. That 
means that the area of the cross sections of the groove and shoulders perpendicular 
on the x-axis should be equal. Mathematically, using the unit vector of the x-axis 
xr , this can be written as: 

 ( ) ( ) xDBDAxDBDC rr
⋅×=⋅×  (4.2) 

– The direction of ur  equals the direction of the line CA. As a consequence of this 
direction, material flows only into the block ABCD through face BCD and leaves it 
through face ABD. The magnitude of ur  is determined by volume conservation of 
plastic material. The material flows outside the deformation zone with velocity 

0ur . This flow is in negative x-direction according to the coordinate system in 
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figures 4.2 and 4.4. The volume flow should be the same at both sides of face 
BCD. This is also the case for face ABD, but the volume conservation does not 
have to be implemented for the latter face, because this follows implicitly from 
volume conservation at face BCD and the dependency of the location of vertices A 
and D. Using the normal of face BCD BCDnr , the magnitude of ur  can be calculated 
with the following equation: 

 0unun BCDBCD
rrrr

⋅=⋅  (4.3) 

Following the steps given above from equation (4.1) an objective function is obtained of 
two independent variables that is minimized by the simplex method. This function is used 
in a dimensionless form by normalizing it with the frontal area of the ploughing indenter 
(proportional to the moved material from the groove to the shoulders), the scratch velocity 
and the yield strength of the deforming material. This results in the following function: 

 ( )
( )sy
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,

2
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r=  (4.4) 

Figure 4.5 shows some results of the model. In this figure, for the angle αs = 45° graphs of 
the normalized deformation power are given for different values of αfr as a function of the 
factor m. In figure 4.5 a horizontal dashed line shows the minimal deformation power in the 
case that m = 1. The situation with m = 1 corresponds to the situation of shear in the bulk 
material (τ = k). An m factor smaller than 1 can occur when shear at the interface between 
the ploughing asperity and the plastically deforming material takes place. The situation of 
minimal deformation power in the case of m = 1 happens as αfr = 54°. In the case that m = 1 
in the sense of stresses no difference exists between shearing within the plastic deforming 
material or on the interface between the asperity and plastic deforming material, and so, no 
preference exists of shearing on the interface or within the plastic material. Taking into 
account the plastic power, the situations that belong to the area in figure 4.5 above the 
dashed line will not happen as shear can happen within the material with less power. Shear 
in the material, which means formation of a dead metal zone, can only happen as that 
results in an αfr that is larger than αfr0, otherwise the rigid pyramid itself shears. From 
figure 4.5 it follows, that a dead metal zone is not only formed if m = 1, but even in the case 
if m < 1. 
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In figure 4.6 the normalized deformation power is presented as a function of αfr for 
different values of αs. If a dead metal zone is formed, the value of αfr will be the minimum 
value of the graph. These minimum values of αfr are about 40° to 55°. 

 
Figure 4.5. Deformation power (normalized) versus Tresca factor m for different values of 
αfr and αs = 45°. The horizontal dashed line gives the minimum level of power in the case 
that m = 1. 

 
Figure 4.6. Deformation power (normalized) versus αfr for different values of αs and m = 1. 
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In figure 4.7, the results of the model are shown in a more general form. In this figure lines 
are shown that give the transition between shear in bulk and shear on the interface for a 
certain value of αs. Below the transition line shear in the bulk takes place and a dead metal 
zone will be formed. A transition line in the figure connects situations with an equal 
deformation power for a certain αs. Ploughing with a pyramid with an αfr that is below the 
graph costs more power than a situation on the graph, so a dead metal zone will be formed. 
This dead metal zone gets an αfr that can be found by following the graph till m = 1, due to 
lack of any lubrication. 

From the graphs in figure 4.7 it follows that as the interface is weaker, for example due to 
lubrication, αfr has to be smaller, to get shear in the bulk. Or in other words, if the surface is 
better lubricated, a higher attack angle is needed to get shear in the bulk material. Further, 
dead metal zones are only formed in the case of low values of αfr. In general, engineering 
surfaces do not have such steep roughness peaks, mostly the slopes are far below 30°, so 
the half top angle, like αfr and αs should be above 60°. In that case no material pickup will 
happen due to formation of dead metal zones on roughness scale. The steep slopes are the 
risky zones for material transfer due to the effect given above, for example due to sharp 
scratches. 
The model presented here gives a mechanism for material transfer due to interlocking. It 
can be shown that material wears off from the plastic deforming contact body and attaches 

 
Figure 4.7. Transition lines from shear in bulk material (dead metal zone formation) to 
shear on interface for different values of αs. 
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to the ploughing pyramid. This wearing off of material can happen even in lubricated cases 
as can be seen in figure 4.7 for the case that m < 1 and there is no work hardening. 
For the two dimensional case a comparable model is formulated by Avitzur [2]. In two 
dimensions it is in fact not possible to describe ploughing behaviour. Because of material 
conservation, the height of the plastic deforming material behind the plastic deformation 
zone should be the same as in front of this zone or otherwise it is a matter of material 
removal. In the case of no material removal only rubbing of a ridge can be described. 
Avitzur shows that on the base of plastic work minimization the attack angle cannot exceed 
an angle of 14° in the case of rubbing. Higher attack angles shear off the deforming ridge. 
This maximum angle of 14° is only possible as m = 0. For higher values of m this angle is 
even smaller. Translated to variables of the model described in this chapter, αfr should 
exceed 76° to avoid that material shears off. 
In this section the focus was on plastic deforming material. The manner of deformation was 
determined on the base of work minimization. This gives the possibility to show how 
roughness of the rigid material in a number of cases is filled with the material from the 
plastic deforming body. Due to the fact that work hardening is not taken into account, the 
material that sticks in front of the rigid asperity still needs a 'back' to do not shear off from 
the asperity. So, growth in height cannot be described by this model. In the following 
sections the focus is on the asperity and the transferred layer on it. By making force 
analyses and assuming hardening of the transferred material, a model will be shown that 
can describe asperity growth in height. 

4.3 Stability criterion for pyramidal shaped asperities 

4.3.1 Introduction 
The stability of an asperity or a lump that is formed on an asperity will be discussed in this 
section. On the basis of a mechanical analysis a model is formulated, that estimates the 
stresses inside a lump at the interface between the lump and the original tool material or 
within the lump itself. From this analysis it follows whether the lump is stable or it 
collapses. The parameters in this model are the strength of the lump material, the geometry 
of the lump and the strength of the interface between the lump and the plastic deforming 
counter material. In the case where the lump is stable and able to grow, it potentially causes 
severe scratching of the sheet. 
The model is a derivation of the surface flow line model presented by Lafaye [29]. In the 
surface flow line model, the forces are the result of a normal contact pressure and tangential 
stresses acting in the direction of an assumed flow line field. For formulating the model in 
this section, a pyramid shape is chosen. In a lot of models, a spherical shaped asperity 
geometry is used, such as in the models presented in chapter 2 and in [29]. According to the 
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performed experiments, a steady angle can more or less be observed during material 
transfer from sheet metal material to a scratching asperity, as discussed in chapter 3, see 
figure 3.11. The pyramid is a geometry in which a certain attack angle can be easily 
implemented. Another advantage is the relatively simple mathematical description of this 
shape. 

4.3.2 Stress analysis of a lump 
An asperity is formulated as a pyramid shaped body as given in figure 4.8. The geometry as 
depicted in this figure is used to formulate the statics model and only describes the part of 
the asperity in contact. The points B and D are respectively the extremes of the width w and 
the height h, so behind the plane ADB, no contact is expected. Therefore the geometry 
behind the plane ADB is omitted first, to simplify the analysis. In reality the internal stress 
distribution is also dependent of the rear part of the asperity. This extension of the model 
will be discussed in section 4.3.4. With the geometry given in figure 4.8, the lump is 
completely defined by w, h and the length l or in the dimensionless form, normalizing by l, 
two geometrical quantities remain: h̄ = h/l and w̄ = w/l. 

The following is assumed in the model: 
– The coordinate system is defined as given in figure 4.8. The origin O is on the 

point where the two dashed lines are crossing. The dashed lines are on the x and 
z-axis. 

– The tip is stationary. In the far field the plastic material flows in the negative 
x-axis direction. 

– The asperity is symmetric. The plane of symmetry is the xz-plane. Because of this 
symmetry, effects that play a role in the positive y-space, play implicitly also a 
role in the negative y-space, but will not always be called explicit. 

– Face BDC (and ACD, because of symmetry) is the contact plane on which the 
normal pressure and shear stresses act. 

 
Figure 4.8. Tip geometry. 
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– The direction of the contact shear stress is determined by the surface flow lines of 
the plastic material in contact with the tip. The direction of the shear stress is 
determined by the vector in face BDC, that minimizes the angle with the flow in 
the far field, that means, minimize the inner product tx

rr
⋅ , with xr  the unit vector 

in the direction of the positive x-axis and t
r

 the unit vector of the direction of the 
contact shear stress. The direction given by this minimization does not have to be 
in agreement with the direction of shear in reality, but this is chosen as an 
approximation. 

– The contact pressure has a constant value ppl on the whole contact area. The 
tangential shear stress τpl is calculated using a Coulomb friction law  τpl = µppl. 

– The asperity is rigid. 
– The connection of the asperity to the bulk material at face ABC is an elastic spring. 

This results in a constant tangential stress τABC in the x-direction and a linear 
function for the value normal stress σABC which is a function of the x-coordinate. 

Sign conventions used for stresses in the model: 
– Plastic pressure ppl is positive in the case of compressive stress. 
– Plastic shear stress τpl is positive in the direction of .t

r
 

– Normal stress σABC is positive for tensile stress. This is the opposite of the 
convention of ppl. Usually in mechanics: tensile is defined as positive, but contact 
pressure deviates from this standard, because of its compressive nature. 

– Tangential stress τABC is positive in the positive x-direction. 
The external forces are acting on the face BDC. The coordinates of these three points B, D 
and C are respectively given by (0, w, 0), (0, 0, h) and (l, 0, 0). These points describe a 
plane, which has the unit normal vector: 
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To minimize tx
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⋅  vector t
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 has to be in the plane that is described by the vectors xr  and 
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These two vectors have to be used in the incremental force equations: 
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With equations (4.7a) and (4.7b) the external forces on the asperity are given. These 
relations are used to calculate internal stresses. 
From the tip with the properties as given above, stress relations are found on the basis of a 
statics analysis. This statics analysis is elaborated in appendix A. The stress relations found 
are, in dimensionless form (as presented in equations (A.18) and (A.19)): 
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In these equations ĀABC is the surface area of face ABC, see appendix A equation (A.24), x̄ 
the x-coordinate, x̄c the centroid of face ABC and Īcyy the area moment of inertia of face 
ABC with respect to the line x̄ = x̄c. The bar above these quantities indicates that they are in 
the dimensionless form. Lengths, areas and area moments are normalized by respectively l, 
l2 and l4. The definition of AABC, xc and Icyy is worked out in section D.4. 
Equations (4.8) and (4.9) can be simplified by substituting x̄c, ĀABC and Ī cyy by their 
equivalent functions of w̄ and x̄. The substitution will be omitted, because the general 
formulation of equations (4.8) and (4.9) makes it possible to use these equations for other 
situations, like a modified asperity shape and crack formation. These situations will be 
further discussed in sections 4.3.4 and 4.3.6. 

4.3.3 Discussion of stress analysis 
For a number of situations the graph is given in figure 4.9 of τABC/ppl as a function of the 
normalized asperity height h̄ by varying the normalized asperity width w̄. According to [39] 
the relation between hardness and yield strength is given by: 

 H = 2.8σy (4.10) 

In the model, H is the hardness of the plastically deforming material. It is assumed that ppl 
equals H, because ppl is the real contact pressure. According to the Tresca criterion a 
material fails as the shear stress exceeds a certain value. This maximum shear stress value 
is 0.5σy. From equation (4.10), the assumed value of H and the Tresca criterion it follows 
that: 

 τpl_max = 0.18ppl (4.11) 

From this analysis it follows that µ has a maximum value of 0.18. The coefficient µ is the 
coefficient of friction at the interface and contains no ploughing effect. Due to ploughing 
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the macroscopic coefficient of friction might be higher. The maximum value of µ will only 
occur in the case of a very good adhesion of the plastic material to the asperity. From the 
graphs in figure 4.9 it follows how strong an asperity has to be to resist the internal shear 
stresses as a result of the plastic forces acting on the asperity, using the equations (4.8) and 
(4.11). 
From figure 4.9 it becomes clear that τABC is strongly related to h̄. The influence of w̄ is 
limited. Although the values of h̄ and w̄ contribute in the same amount to the plastic forces, 
a higher value of w̄ results in a larger area ĀABC over which the plastic forces can be 
distributed. So speaking in terms of stresses, the increasing amount of plastic forces due to 
the increase of w̄ is almost cancelled out by the larger bearing area of ABC. The effect of µ 
is of importance for values of h̄ << 1. If h̄ = 0 only adhesive forces act on the asperity, so 
τ/ppl = µ for h̄ = 0. For higher values of h̄ the effect of the frontal area, and so the ploughing 
effect, dominates the plastic forces. 
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The stress component σABC is given by equation (4.9). Equation (4.9) is a linear function of 
the x̄-coordinate, so the extremes of σABC can be found on the extreme x̄-coordinates x̄ = 0 
and x̄ = 1. For a number of situations, graphs of σABC are given for these points in figure 
4.10. For h̄ << 1, from x̄ = 0 to x̄ = 1 σABC is about the contact pressure. For larger values of 

a  

b  
Figure 4.9. Mean shear stress over plastic pressure as a function of normalized asperity 
height on face ABC for w̄ = 0.25, 0.5, 1 and lim w̄ → ∞ for two different plastic shear 
strengths: µ = 0.1 (a) and µ = 0.18 (b). The arrows give the order of the graphs for 
increasing w̄. 
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h̄, the effect of the bending moment with respect to x̄ = x̄c becomes more and more 
dominant. In figure 4.10, this effect follows from the lines of x̄ = 0 and x̄ = 1 that diverge 
for increasing h̄. 

a  

b  
Figure 4.10. Normal stress over plastic pressure as a function of normalized asperity 
height on face ABC at x̄ = 0 (dashed lines) and x̄ = 1 (solid lines) for w̄ = 0.25, 0.5, 1 and 
lim w̄ → ∞  for two different plastic shear strengths: µ = 0.1 (a) and µ = 0.18 (b). The 
arrows give the order of the graphs for increasing w̄. 
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For determining the stability of the lump, a stress criterion has to be used. Using the Von 
Mises yield criterion all the stress components have to be known. In the case where it is 
assumed that τABC and σABC are the only relevant stress components, the Von Mises criterion 
reduces to: 

 22 3 ABCABCVM τσσ +=  (4.12) 

In the case where the bulk material at face ABC is fixed, so εxx = εyy = 0 and τABC is the only 
relevant shear stress component, the Von Mises criterion becomes (using Poisson's ratio ν): 
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Both components, τABC and σABC, according to equations (4.12) and (4.13), do not make a 
negligible contribution to the Von Mises stress. Poisson's effect will reduce the effect of 
σABC, but the effect is still there. In sections 4.3.4 and 4.3.5, the stresses, especially σABC, 
will be discussed in more detail, in order to formulate a stability criterion for the lump. 

4.3.4 Model with an extended base of the asperity 
The asperity of the model formulated in section 4.3.2 is based on a simplified geometry. 
The pyramid that has been used has the face ABC as its base, which lies in the xy-plane on 
the y-axis and the positive x-area. The top D is positioned on the z-axis. This simplifies the 
formulation of the model, but has some shortcomings. In the model the rear face of the 
pyramid, located on the yz-plane, is perpendicular to the base ABC, but in general surface 
roughness does not have very steep faces, even sharp scratches have in general a slope far 
below 90°. To reduce the steepness of the back face, the base of the pyramid has to be 
extended into the negative x-area on the xy-plane. 
A manner to adapt the asperity of the current model to a more realistic one can be done by 
extending the pyramid with its mirrored body, by mirroring it in the yz-plane. This results 
in a pyramid that has extended its base ABC with one extra vertex C' with coordinates 
(−l, 0, 0), see figure 4.11. This extension of the asperity has no consequences for the 
external plastic forces on it, because the plastic material is only in contact with the faces at 
the front side of the yz-plane (faces BDC and ACD), which exist already. Due to the 
extension of the asperity, inside the asperity the plastic forces can be carried on a wider 
area, which results in reduced stresses. 
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One of the assumptions of the model is that the asperity is a rigid body. If that assumption 
is used, the equations (4.8) and (4.9) remain valid, by calculating the values of x̄c, ĀABC and 
Ī cyy for AC'BC instead of ABC. These values can be calculated using equations (A.24) to 
(A.26). The result of this extended base is shown in figure 4.12. From the graphs it 
becomes clear that the ratio σABC/ppl gets a value in the order of  −1 for a wide range of h̄. 
That means that at values of h̄ of about 1, using AC'BC as the base of the asperity, the 
stresses are much lower than in the case where ABC is used as base. But for values of h̄, let 
say h̄ < 0.2, ABC will give better results than AC'BC as the asperity base. The reason is, that 
in the case of small values of h̄ the stress state should be close to the contact stress, so 
σABC/ppl should be close to −1. Using AC'BC results in a higher compressive stress, namely 
σABC/ppl ≈ −1.5 for h̄ << 1. This stress is the result of the lever effect of the extended rigid 
asperity. This lever effect is not realistic in the case of low values of h̄. A low value of h̄ 
does not give enough stiffness to justify the assumption of a rigid asperity. So, a 
symmetrical pyramid, with the yz-plane as its symmetry plane, cannot be used immediately. 

 
Figure 4.11. Tip geometry with the extended base AC'BC. The grey 
quadrilateral AEBC is the region that (mainly) carries the plastic forces. 
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From figure 4.12 it can be concluded that the part of the base that carries the load is 
influencing the stresses significantly. The area that carries the load is not known 
beforehand. Therefore FEM calculations will be performed in order to estimate the load 
carrying area. 
Because of the finite stiffness of the asperity, the plastic load on it is carried by the material 
near the loaded area. To get more details about the loading area, as mentioned before, 
FEM-analyses have been performed on the asperity as shown in figure 4.11. The analyses 
have the following properties: 

– The asperity is built from elastic tetrahedral elements. 
– For comparison of the support of the asperity, calculations are performed for both 

a rigid and an elastic support of the asperity. The elastic support is made from 
tetrahedral elements, in fact a part of the elastic bulk material is modelled. 

– The faces BDC and ACD are loaded with a unit normal pressure that represents the 
plastic normal load. The plastic shear stress gets the value µ. This way of loading 
corresponds to normalizing the plastic stresses by ppl. 

– The calculations are performed for different values of w̄ and h̄. 
Some FEM results are presented in a number of figures. In figures 4.13 to 4.15 all 
normalized stress components are presented for one asperity geometry. Only these results 
are shown, because the results for these situations with h̄ < 0.3 and 0.5 < w̄ < 2 give 

 
Figure 4.12. Normal stress over plastic pressure as a function of 
normalized asperity height on faces ABC and AC'BC. The conditions 
are: x̄ = 1 for w̄ = 1 and µ = 0.1. 
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comparable results. Most attention will be paid to σxz, see figure 4.15a, because these 
results will be used later on for formulating a failure criterion, see figure 4.16. 

    

a  

b  
Figure 4.13. Normalized stresses on plane AC'BC of pyramidal asperity. Given are σxx/ppl 
(a) and σyy/ppl (b). The conditions are: w̄ = 1, h̄ = 0.2 and µ = 0.1. 
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a  

b  
Figure 4.14. Normalized stresses on plane AC'BC of pyramidal asperity. Given are σzz/ppl 
(a) and σxy/ppl (b). The conditions are: w̄ = 1, h̄ = 0.2 and µ = 0.1. 
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a  

b  
Figure 4.15. Normalized stresses on plane AC'BC of pyramidal asperity. Given are σxz/ppl 
(a) and σyz/ppl (b). The conditions are: w̄ = 1, h̄ = 0.2 and µ = 0.1. 
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From these FEM-analyses it follows that the area that actually carries the load is a function 
of h̄, as can be seen in figure 4.16. The stresses in the figure given for the three asperities 
with the same height (h̄ = 0.2) distribute the load in almost the same manner over the face 
AC'BC. The lower asperity (h̄ = 0.1) has a lower shear stress on this face and is distributed 
less in backwards direction. From these calculations it is concluded that the area on the 
xy-plane that carries (mainly) the load is the quadrilateral AEBC, see figure 4.11. Vertex E 
has coordinates (−lb, 0, 0). The value of lb as a function of h can be approximated by lb = ch, 
where c is a constant that has a value of about 2. The stress level is low beyond x̄ < ch̄ and 
the shear stress τABC is approximated well by equation (4.8), as is shown by the dashed lines 
in figure 4.16. The value of c has been obtained from FEM simulations where h̄ < 0.3. The 
value of lb has the geometrical restriction that E remains within the base AC'BC. For 
approximating the internal stresses in the asperity, the focus is fully on the pyramid 
AEBCD. The role of AC'BED is negligible. From the FEM-analyses it follows that equation 
(4.9) is not a good estimator for the normal stresses in z-direction. The normal stress in 
z-direction is not a linear function of x, as given by equation (4.9), but nearly constant in the 

 
Figure 4.16. Shear stress over plastic pressure along the x-axis on face AC'BC. 
Comparison of model (dashed lines) and FEM calculations (lines with markers). The sign 
of the FEM calculations is changed in the plot, in fact, in the plot it is given as (−σxz/ppl). 
The presented situations are h̄ = 0.1, w̄ = 1 (a); h̄ = 0.2, w̄ = 0.5 (b); h̄ = 0.2, w̄ = 1 (c) and h̄
 = 0.2, w̄ = 2 (b). 
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loaded area equal to ppl, see figure 4.14a. Near the yz-plane the normal stress in z-direction 
decreases, because plastic load acts only at the side of the positive x-axis of the yz-plane, 
but the load can be carried at both sides of this plane. 

4.3.5 Asperity fail criterion 
To define a fail criterion, stress relations can be used such as the relations of Von Mises or 
Tresca. These relations need the complete stress state. The stress components σzz and τxz are 
relatively easy to obtain as mentioned above. According to the FEM analyses the values of 
σxx and σyy are about a half of the value of σzz. Shear stress τxy has a relatively small value, 
about a tenth of τxz, τyz has values in the order of τxz. Both, τxy and τyz are zero on the 
xz-plane due to symmetry. Even though four of the six components are only described 
qualitatively, a stress criterion can still be given. If a plastic failure is assumed, plastic 
deformation can be described using the relation of Prandl-Reuss [9]. This is given for the 
situation that the Von Mises stress exceeds σy. In index notation, this relation is given as: 

 ( )[ ] ( ) λδσσσνδσνε ddd
E

d ijkkijkkijijij 3
111

−+−+=  (4.14) 

In equation (4.14) the deviation of strain is given as a function of the deviation of stresses 
(elastic effect) and the stresses itself (plastic effect). In this relation E, is Young's modulus, 
ν is Poisson's ratio and δ is the Kronecker delta. The term dλ relates the plastic deformation 
velocity to the stresses and is only used here as a constant without further explanation. 
According to equation (4.14) shear strain with indices ij is only related to other tensor 
components with indices ij, so independent of tensor components with different indices. 
That makes the three shear strain equations independent relations. The normal strains are 
coupled by the effect of the hydrostatic pressure, as given by the terms with δij. 
To formulate the normal strain relations, the following is assumed: 

– The material in the surface is fixed in x and y-direction by its surrounded material. 
Therefore: dε11 = dε22 = 0. In z-direction the material can be pressed into the 
contact. 

– The load in z-direction is constant: σ33 = ppl. Therefore: dσ33 = 0. 
(To remain close to the index notation as given in equation (4.14), the indices x, y and z are 
temporarily replaced by the 1, 2 and 3.) 
Now, the following set of equations can be derived: 
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The amplitude of equation (4.15) is not known, because of the unknown dλ, but still the 
direction of the deformation can be determined, as is given in the vector plot of figure 4.17. 
In this figure only the stresses are given that are in the range −1< σ/ppl <0, because the 
stresses are according to the FEM calculation in this range before plastic deformation. 
According to figure 4.17, the deformation goes in the direction of the pure hydrostatic 
pressure situation. The strain before the hydrostatic pressure situation is reached is very 
small. In the case of the hydrostatic pressure only, the stresses are fully elastic. Contact 
pressures are in the order of 1 GPa (a typical hardness value), E is in the order of 100 GPa, 
so the hydrostatic situation is already reached after a deformation in the order of one 
percent. 

The next step is the effect of the shear strain components. According to equation (4.14), a 
strain component εij, with i ≠ j, is only a function of the stress components σij and dσij and 
is not coupled to stresses with other indices. So, the equations for the shear strain 
components form a set of uncoupled equations and the effect of every separate shear stress 
component can be discussed on its own, as will be done below. 

– The deformation due to σ12 is relatively small, because its value is much smaller 
than the other components, so its relevance is limited. 

 
Figure 4.17. Vector plot of the stress deviation as a function of the 
stresses in x and y-direction in the case of plastic deformation in the 
contact zone of an asperity. 
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– The deformation due to σ13 is of importance, because its value is not small related 
to the other stresses and there is no stabilization after plastic deformation, because 
shearing in backwards direction of the asperity does not give a fundamental 
change in the load situation. 

– In the case of σ23 the stress is negative for positive y-coordinates and positive for 
negative y-coordinates. That means that the material is compressed, so this stress 
causes a stabilizing action. 

From the analysis as described above it follows that most stress components generate a 
plastic deformation into the direction of a more stable situation. This stabilization is already 
realized after small deformations. This statement does not hold clearly for σ13. Therefore, 
this stress will be used as the failure criterion for an asperity or a lump on an asperity. 
When according to this stress component the asperity deforms plastically, it is stated that it 
fails. This stress will be calculated using equation (4.8). 

4.3.6 Crack formation 
The asperity formulated in this chapter has an idealized geometry. In practice an asperity 
does not have a well defined shape and may contain a crack. An irregular shape can be 
approximated by choosing the proper dimensions w and l. To deal with a crack in the 
asperity, the model will be adapted. 
The crack is supposed to be in the face ABC and starts at vertex C and has length lcr, see 
figure 4.18. If the crack is situated in the face ABC, it is possible to more or less use the 
same strategy as in section 4.3.4. The plastic forces on the faces BDC and ACD are not 
changed, but only the internal bearing area of face ABC (or AEBC). Changing this bearing 
area changes some important quantities. First, the bearing area ĀABC itself reduces and 
consequently Ī cyy too. These reduced quantities immediately have effect on the stresses 
according to equations (4.8) and (4.9). But, as already discussed in section 4.3.4, the stress 
ratio σABC/ppl is about −1. That means a compressive stress state, so ĀABC and Ī cyy do not 
reduce effectively and σABC/ppl do not change due to the crack. In the case of τABC/ppl the 
effect of the crack depends on the surface behaviour of the crack. The extremes are full 
adhesion of the crack surfaces and no interaction in the x-direction. In the case of full 
interaction, there is no crack anymore and for τABC/ppl equation (4.8) remains unchanged. In 
the case of no interaction in the x-direction, the value of ĀABC in equation (4.8) has to be 

reduced by the dimensionless size of the crack area .2
crlw  That results in an inversely 

proportional relation between τABC/ppl and the value of the remaining area ĀABC, which is 
worked out in section 4.3.7. 
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4.3.7 Lump failure model 
A lump failure criterion is formulated on the basis of the statics analyses as presented in the 
section 4.3.2 and appendix A. In sections 4.3.4 and 4.3.5 the importance of equation (4.8) is 
discussed and it is concluded that this equation gives a good estimator when an asperity 
fails and therefore will be used as a fail criterion. The implementation of this criterion will 
be discussed in this section. 
As a basis of the implementation, equation (4.8) will be used. This equation itself gives 
only the shear stress in x-direction on the face ABC. In sections 4.3.4 and 4.3.6 some 
adaptations are already presented: adaptation of the asperity geometry and the effect of 
crack formation. These adaptations play with area ĀABC over which the force in x-direction 
has to be spread. The next step is to implement the strength of the material in the asperity 
and of the interface between the asperity and plastic deforming material. Finally a stability 
criterion has to be formulated under which circumstances an asperity can exist. 
The criterion equation (4.8) will be formulated in a different way and some new variables 
are defined. In sections 4.3.4 and 4.3.6 the variable ĀABC is already interpreted in a more 
flexible way than its name suggests. According to its name, it is the size of the triangle 
ABC. The area size of triangle ABC is wl, or w̄ in dimensionless form. The variable ĀABC 
will be substituted by: 

 ( )wlhcA crABC
21 −+=  (4.16) 

Here, ĀABC is corrected for a changing base of the asperity. The correction factor c is the 
factor as defined in section 4.3.4, l̄ cr is the dimensionless length of the crack as defined in 
section 4.3.6. 
Using equation (4.16) in equation (4.8) and introducing the dimensionless shear strength T, 
defined as the shear strength divided by ppl, the following inequality can be constructed: 

 
Figure 4.18. Part of tip geometry with crack at vertex C (grey area). 
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The structure of inequality (4.17) is derived from the plastic force divided by a bearing 
area. Rewriting this inequality to a form that gives a more direct insight in the dependency 
of h̄ gives the following: 

 ( ) ( ) ( )22 /111 whhcTTlcr +≥−+− µ  (4.18) 

The formulation of inequality (4.18) gives at the left-hand side the force that can be carried 
at the adapted area of ĀABC minus the force due to the plastic normal pressure. At the 
right-hand side the force remains due to the plastic shear stress at the interface between the 
tip and plastic deforming material. Reformulating (4.17) to (4.18) gives a linear function of 
h̄ crossing a square root function of h̄. This inequality gives in a more orderly fashion the 
effect of c, l̄ cr and µ. The solution for this inequality will be given now. 
Treating (4.18) as an equality, it can have at most two solutions, called here h̄min and h̄max 
These solutions are: 
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And the limit situation for wcT /1 µ=− : 
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The possible solutions of inequality (4.18) in a specific case are given in tables 4.1a and 
4.1b. 
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For the situation that l̄ b ( l̄ b = ch̄) exceeds the value of 1, equation (4.16) is not valid 
anymore, because ĀABC is limited by the area of AC'BC. This results in a limitation of h̄ to: 
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As long as the inequalities (4.18) and (4.20) are met, the asperity will resist the plastic 
forces, otherwise it fails. This gives a criterion of the maximum possible value of h̄. The 
value of h̄ is according to its definition the tangent of the line CD with the x-axis, so by 
equation (4.18) the maximum attack angle of an asperity is given. In the figures 4.19 and 
4.20 a number of results are shown. 
From the figures 4.19 and 4.20 the effect of the different variables is presented. The effect 
of µ becomes clear in all graphs. An increasing value of µ results in an increasing force on 
the tip, so the maximum tip height reduces. The effect of lubricant, contamination or other 
situations that influence the interface strength has a clear effect on the maximum height. 

 1<cT  1=cT  1>cT  
0=µ  

maxhh ≤  no maximum of h̄ no maximum of h̄ 

( )Tlcr
21−<µ  maxhh ≤  maxhh ≤  see table 4.1b 

( )Tlcr
21−≥µ  0=h  0=h  see table 4.1b 

Table 4.1a. Solutions of inequality (4.18) for different situations. 
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Table 4.1b. Solutions of inequality (4.18), detail of table 4.1a for cT > 1 and µ > 0. 
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a  

b  
Figure 4.19. Maximum possible values of h̄ as a function of the plastic coefficient of friction 
for different properties of the asperity. The default values are T = 0.27, l̄ cr = 0, c = 2 and 
w̄ = 1. The varied variables increase in the direction of the arrows. The dashed lines show 
the graphs in the case where the constraint of inequality (4.20) was not used. The 
variations are: (a) T = 0.18, 0.27, 0.36 and 0.45. The 'free' dashed line belongs to T = 0.36 
and the dashed line of T = 0.45 is omitted, because it lies far above the other graphs. 
(b) l̄ cr = 0, 0.2, 0.4 and 0.6. 
The dotted lines show the transitions between different wear regimes as described in 
section 2.2.3 and as shown in figure 2.10. 
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The effect of T is another quantity that has a strong effect on the maximum tip height. From 
table 4.1a it follows that in the case where the tip material has the same strength as the 
plastic material through which it ploughs, so T = 0.18 according to equation (4.11), the tip 
cannot grow in the case of µ = 0.18. This is obvious, because this situation corresponds 
with the situation within the bulk of the plastic material. In case where cT ≥ 1 and µ = 0, h̄ 
has no maximum, according to table 4.1a. If inequality (4.20) is taken into account, h̄ 
always has a maximum. The effect of inequality (4.20) is visible in the figures 4.19 and 
4.20 as the difference in the dashed and solid graphs. From the graphs in figure 4.19a the 
strong effect of T becomes clear, but the effect is weakened by inequality (4.20). 
The effect of the crack size is shown in figure 4.19b. In the given situation, the effect of l̄ cr 
on the maximum value of h̄ which decreases by an increasing value of l̄ cr. This can be 
explained by the fact that the crack area size is the square of l̄ cr. There is almost a linear 
relation between the crack area size and the maximum tip height. Some elucidation is 
required about using l̄ cr. In order to study the sensitivity of a crack, it is shown in the 
formula given in this section as well as in the graphs of figure 4.19b. However, using it in a 
practical way is more difficult. When starting from real surface roughness data, which have 
been obtained through optical techniques, it only contains surface data and not the cracks 
below the surface. An additional second problem is the state of the crack. If it is a dry 
crack, in which case there is still a lot of adhesion, then l̄ cr gives an overestimation of the 
effect of the crack, because both crack surfaces are still interacting. However, if the crack is 
lubricated or otherwise contaminated and low adhesion consequently exists, then l̄ cr gives a 
good estimation of the reduced strength. A third problem is the changeability of l̄ cr. The 
value of l̄ cr will increase due to a growing crack. But as the tip grows through material 
transfer the value of l̄ cr may decrease, because the absolute crack size remains the same and 
the tip grows. 
Figure 4.20a presents the effect of the factor c. This factor will not, in fact, be varied, 
because it is a constant determined by FEM-calculations. The said determination of c is an 
estimation, in the sense that the model calculated a shear stress τABC that is close to the 
values of the FEM-calculation. The figure shows the sensitivity of this estimation. As long 
as inequality (4.20) has no effect, the factor c has a clear effect. However, in the case where 
inequality (4.20) restricts h̄, it can be seen that c no longer has an effect. This is obvious 
and was taken into account as the reason why inequality (4.20) is introduced. 
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a  

b  
Figure 4.20. Maximum possible values of h̄ as a function of the plastic coefficient of friction 
for different properties of the asperity. The default values are T = 0.27, l̄ cr = 0, c = 2 and 
w̄ = 1. The varied variables increase in the direction of the arrows. The dashed lines show 
the graphs in the case where the constraint of inequality (4.20) was not used. The 
variations are: (a) c = 1.5, 1.75, 2, 2.25 and 2.5. (b) w̄ = 0.25, 0.5, 1, 2 and 4. The lower 
set of lines is for T = 0.18, the higher set for T = 0.27. Due to the close results a number of 
lines have a huge overlap. 
The dotted lines show the boundaries of the different wear regimes, see description of 
figure 4.19. 
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The width w̄ of the asperity has a weak effect on the maximum value of h̄. In figure 4.20b a 
large range of w̄ is presented. Only for small values of w̄, w̄ < 1, the effect of w̄ is clearly 
visible. In inequality (4.18) w̄ is enclosed in the term h̄/w̄. The effect of this term is shown 
in figure 4.20b by the sets of graphs for different values of T. A higher value of T results in 
a higher value of h̄ and so in a stronger effect of w̄. For even higher values of T as presented 
in figure 4.20b, the effect of w̄ would be stronger according to inequality (4.18), but is 
mostly restricted by the constraint of inequality (4.20). 
From the graphs and the analysis it can be concluded that the µ and T are the most 
important variables for using the model. The effect of cracks is difficult to implement and w̄ 
can be implemented easily, but has no strong effect. Obtaining proper values of µ and T is 
the most challenging task in using the model. 
Figures 4.19 and 4.20 show lines (dotted lines) that give the transition between different 
wear regimes as described in section 2.2.3. According to [39] the material transfer from the 
workpiece to the tool occurs in the wedge regime. Section 4.4.3 explains why it is likely 
that transfer occurs in this regime. To show the area of the wedge regime on a (µ, h̄
)-coordinate system, the diagram as shown in figure 2.10 has to be transformed from the 
(fHK, θ)-coordinate system. Using the definition of µ and equation (4.11), it follows that 
µ = 0.18fHK. Both, θ and h̄ give a (kind of) attack angle and are related as h̄ = tan(θ). Using 
these relations of µ and h̄ the wear mode diagram can be given in the (µ, h̄)-coordinate 
system. 
Combining the results of the maximum possible values of h̄ and the wear mode diagram, 
some conclusions can be drawn. When lump growth only happens in the wedge regime, 
µ > 0.09 and the value of h̄ cannot exceed 1 due to lump growth. For values of µ slightly 
more than 0.09, lump growth takes place in a very narrow band of h̄-values. For values of µ 
of about 0.18, lump growth can occur in a large range of h̄ and for µ = 0.18 for h̄ < 1 (so, 
practically for every asperity) lump growth will occur. Thus, a higher value of µ gives more 
risk of galling. 

4.4 Adhesion 
In order to adhere to the tool surface, the adhesion force between the sheet material and the 
tool material needs to be sufficiently high. Adhesion is the attraction between dissimilar 
atoms or molecules. By contrast, cohesion takes place between similar atoms or molecules. 
Here, only adhesion is taken into account and cohesion will be seen as a special form of 
adhesion, where both interacting atoms or molecules are the same. Because the research 
deals with metals, atoms will be spoken about here. 
Adhesion originates from different mechanisms. The mechanisms are: 
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– Mechanical interlocking. Two rough surfaces stick or hook together due to surface 
irregularities. 

– Diffusion: Atoms diffuse across the interface between two contacting bodies, for 
example compatible metals as in galvannealing, a diffusion process that is used for 
zinc on steel. 

– Electrostatic: Electrostatic forces act between surfaces. This electrostatic situation 
can be originated from electron transfer, like in tribo charging. 

– Chemical bond or chemisorption: Strong chemical bonds are formed on the 
interface, like metallic, ionic or covalent bonds. 

– Van der Waals attraction: Intermolecular forces or meniscus forces. 
In this section, the focus is on Van der Waals attraction and on metallic bonds. In the metal 
contact, on the short distance, lower than 0.5 nm, metallic bonds are dominating, due to 
electron exchange interactions [26]. For larger separations, the Van der Waals forces are 
dominating. 
In section 4.4.1, the importance of geometry aspects compared to material aspects is 
presented. Here, it is explained why material aspects are of more importance than the 
geometrical aspects, as long as bodies that attract each other have a certain size. In section 
4.4.2 the work of adhesion is further discussed, based on interfacial and surface energies. In 
section 4.4.3 the adhesion theory is compared with the situation in practice. 

4.4.1 Geometry and material aspects of adhesion 
An important aspect of the adhesion theory is that the interaction energy can be separated 
into a geometry dependent part and a geometry independent part. The impact of these parts 
is presented in this section. These effects are studied on the basis of interaction between 
two atoms. By pairwise addition this is extended to the adhesion interaction between two 
bodies. 
The interaction energy between two individual atoms a and b is given by −Cab/d6. Here, Cab 
gives the interaction energy at a unit distance, dependent on the types of atoms a and b and 
d the distance between the atoms. In this relation, only the attracting term is taken into 
account, because the repulsive term decreases very strongly as a function of d, as given in 
the Lennard-Jones potential, being proportional to 1/d12. By pairwise additivity of all 
interacting atoms in two bodies, the interaction energy between two bodies can be 
calculated. This calculation is given in appendix B. In this appendix it follows from the 
equations (B.3) and (B.4) that the interactive energy can be separated into a geometry 
dependent part and a geometry independent part. The terms before the integrals are 
geometry independent and are proportional to the Hamaker constant. The integrals are 
taken over the body geometries and so geometry dependent. 
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The Hamaker constant is defined as AH  = π2Cabρaρb, where ρa and ρb are the number of 
atoms per unit volume in the two bodies. In this definition the value of AH is strongly 
related to the pairwise additivity of interacting atoms. It is assumed that the relation that 
gives the interaction energy between two single atoms is still valid for every individual 
atom in a body, and therefore pairwise additivity is allowed. Although this assumption is 
not completely correct, the geometrical results remain valid. 
The geometry terms as given in equations (B.3) and (B.4) are derived for half space bodies. 
In reality bodies are finite. Especially in the case of galling and other material transfer 
mechanisms, the material that is transferred may consist of very small particles. So the 
question arises as to which amount interaction forces are geometry dependent and to what 
extent they are material dependent. The interaction energy is proportional to the inverse of 
the distance between the atoms to the 6th power, so the interaction influence reduces very 
greatly as a function of distance. From the calculations presented in appendix B it follows 
that the equations (B.3) and (B.4) already give reasonable answers in case where the bodies 
are an order of magnitude larger than the gap between the bodies. Therefore, if wear 
particles come into contact with the tool, in such a way that the distance between the 
particle and the tool is approximately the atomic distance, the equations (B.3) and (B.4) 
already give good approximations since the wear particle has dimensions of about 10 nm. 
As a result, it can be concluded that macroscopic adhesion relations and quantities can be 
used as long as the wear particle dimensions exceed 10 nm. 

4.4.2 Surface and interfacial energy 
Material transfer is dependent on the bonds between the materials in contact. When 
chemical reactions are absent, the relevant bonds are physical bonds. The strength of these 
bonds is determined by the interfacial and surface energies. The work of adhesion, that is 
the work to be done in order to separate two surfaces, is: 

 ∆γab = γa + γb − γab (4.21) 

The work per unit area ∆γ consists of the work to form a surface of material a and of 
material b, the surface energies γa and γb. The original interface disappears and so the 
interfacial energy γab is released. From equation (4.21) it follows that for a strong bonding 
between two materials, the value of γab should be small compared to the sum of γa and γb. If 
equation (4.21) is used in the case where a and b are the same material, no initial interface 
exists, so the term γab is zero and ∆γab = ∆γaa =2γa. 
A number of relations are found that approximate the surface energy to other physical 
quantities. In [38] it is shown that for pure metals in the cold worked state the value of γ is 
related to the hardness as γ ~ H1/3. In [31] and [32] the surface energy of 3d metals (a group 



4.4 Adhesion 

 

89

of metals in the periodic system containing iron and zinc) is given as a function of the 
electronic work function, the values of which can be found in a handbook as [18]. 
Adhesive forces between metals are dependent on the mutual solubility of a metal couple in 
the case where two dissimilar metals are contacting. If two metals have high mutual 
solubility, adhesion forces between these metals will be strong. This means that for such a 
metal couple the interfacial energy is low and the work of adhesion, needed to separate the 
surfaces, is high. If the mutual solubility of the metals is low, the interfacial energy is high 
and the work of adhesion is low. In figure 4.21, the compatibility of metal pairs is shown, 
according to [38]. 

 
Figure 4.21. Compatibility pairs for elemental metals and a few non-metals, after [38]. 
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The mutual solubility of metals is used to determine the work of adhesion, because it is in 
general very difficult to determine γab. To determine the work of adhesion without using γab, 
the following relation is used: 

 ∆γab = cm(γa + γb) (4.22) 

In equation (4.22) cm is the compatibility parameter. Using this parameter, γab is made a 
function of γa and γb. In [38] the parameters for the different categories, as shown in figure 
4.21, are as given in table 4.2. In this table the values are given of cm and also the definition 
of the different solubility categories. In table 4.2 only a discrete set of values are given for 
cm. In fact, these values only give an indication, because terms like compatible, partially 
compatible and so on are also ranges, with only chosen bounds without really physically 
strict bounds. 

4.4.3 Surface and interfacial energy in practice 
The values given above deal with the situation of pure metals in a clean environment. In 
engineering contacts, this will not in general be the case. At first, in a metal-metal contact, 
the bodies are mostly not created from a single element, but an alloy. Another aspect that 
has even more effect on the adhesion is the contamination on the surfaces. This 
contamination can be caused by an externally added substance, like a lubricant, but also by 
oxidation or other environmental influences. 
An alloy has other surface properties than the pure metals from which it is composed. For 
the surface energy of an alloy it cannot be simply stated that it can be obtained by a 
weighted average of the surface energies of its elements. In [30] graphs are shown of the 
surface energy of some binary alloys as a function of the surface area fraction of one of the 
elements. These graphs do not show a linear relation. Using thermodynamic relations, the 
surface energies are estimated. Although a good estimation of the surface energy costs 
more effort, a weighted average of the surface energies of the elements gives a first rough 
approximation. 

 solubility  
 liquid solid (room temperature) cm 
Identical metals   1.00 
Compatible metals yes > 1 % 0.50 
Partially compatible metals yes 0.1 to 1 % 0.32 
Partially incompatible metals yes < 0.1 % 0.20 
Incompatible metals no, two phases  0.12 
Table 4.2. Properties of mutual solubility categories of pure metals, after [38]. 
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Looking at the surface in more detail, the surface consists of a layered structure. One layer 
can be the base material with another grain structure, but also a layer of contamination from 
the environment. In the literature models can be found of this layered structure, such as the 
4-zone model [6]. This model is shown in figure 4.22. 

These layers are: 
– Layer I is formed by adhesion of particles from the environment like oxygen, 

nitrogen and water. The thickness of the layer does not exceed several ångströms. 
– Layer II is formed by a mixture of bulk material with fine dusts, tool wear material 

and coolant-lubricant liquid. The thickness of the layer is about 1 to 10 nm. 
– Layer III contains only grains of the bulk material, which became deformed due to 

machining of the surface. The thickness of the layer is about 5 µm, but can be 
much thicker in the case of rough machining. 

– Layer IV contains undeformed material, but is an influenced zone, for example by 
heat. 

The layered structure above is one example of a model that describes the composition of the 
materials in the surface region. A number of other models are available with another 
number of layers. Some examples are also given in [6]. Most of the time, these models split 
up one layer into more layers to get more details, or the other way round, layers are 
combined to get a more generalized layer. The extra layers can be an oxide layer, which can 
be a part of layer II as given in figure 4.22, and an adsorbed layer on top of layer I, 
consisting of polarized particles of organic origin from lubricants. 
In [33] the effect of layer I is clearly shown. Experiments are performed where two pure 
metals come into contact under ambient conditions. The samples have been cleaned 
carefully. If the friction is measured immediately after the samples come into contact, the 
friction is much lower than when the samples are first rubbed over each other. Examination 
of the surface shows no differences after both tests. In both cases the surface structure still 
originates from the polishing process. It is assumed that the formed surface layers are 
responsible for the different frictional behaviour. 

 
Figure 4.22. The 4-zone surface layers model, from [6]. 
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The same effect can be seen as surface energies are compared from the metal and its oxide. 
The surface energy of bare metals is in the order of 1 J m−2. Some values reported in [26] 
are 1.1 J m−2 for aluminium and 2.4 J m−2 for iron. The surface energy of aluminium oxide 
will be approximated using the value of AH. According to [7] the value of AH is 15⋅10 −20 J. 
The surface energy can be approximated, using [26]: 

 
( )2nm165.024π

γ HA
≈  (4.23) 

So, the value of γ is approximately 73 mJ m-2. From these values, it follows that it takes 
much more energy to form a metal surface from splitting the material, than to form a metal 
oxide surface by splitting it. In the other way round, it is much more likely that two clean 
metal surfaces adhere, than to attach its oxides. Another problem in adhesion of oxides is 
the alignment of the lattices, which reduces the adhesion possibilities. 
The above shows an approximation of the surface energy of aluminium oxide. This is only 
an approximation and not the real value. In general it is difficult to obtain a reliable value 
for the surface energy of metal oxides. These energies are very sensitive to the surface 
structure of the oxide. In the bulk of the material, an oxide is a regular structure, but at the 
surface this can be disordered. A different ordering of the surface can be responsible for 
different surface properties. Therefore, in different experiments, different values for surface 
energy can be obtained, for example, a surface obtained by cleavage of an oxide may result 
in other values than an 'original' oxide surface [23]. 
From the examples, it follows that contaminations and surface layers strongly lower 
adhesion. So in practice, the adhesion derived from clean metals as in the bulk give too 
high values in most cases. But in the case of galling, these high values are relevant, because 
the metals are in contact when the oxide or other contamination layers have been removed 
by mechanical contact and plastic deformation. Because continuous shear takes place in the 
wedge formation regime, the contact is modelled as the contact between two bare metals. 
So in the following, the surface energy of bare metals will be taken as values for the surface 
energy. These values are given in table 4.3. 

Material Surface energy γ [J m−2] 
Iron (used for tool steel) 2.4 
Aluminium 1.1 
Zinc 0.99 
Table 4.3. Surface energy of used metals, [26] and [46]. 
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4.5 Lump growth model 

4.5.1 Introduction 
Material transfer is one of the reasons why the geometry of an asperity can change. 
Adhesion, discussed in section 4.4, is one of the basics of material transfer in the galling 
mechanism. In the case of material transfer, a lump can be formed on a tool asperity, which 
in turn, can scratch in the sheet that comes into contact with the lump. In this section a lump 
growth model will be developed. 
The basis of the model is the lump growth model of De Rooij [39]. This model is described 
in section 2.3.2. This model is based on lump growth due to material transfer of wear 
particles generated in the wedge regime. The reason why material transfer takes place in 
wedge formation is explained in section 4.4.3. In [39] asperities are modelled with a 
spherical geometry. Further, lump growth causes only an increase in height of the asperity. 
In the model presented in section 4.5.3 and succeeding sections, the geometry of an asperity 
is formulated as a polyhedron with a hexagon base that is able to describe beside growth in 
height, also growth in width and length. The increase of these dimensions is a function of 
the volume of transferred material and a stability formulation of the asperity based on the 
analyses presented in section 4.3. The volume that is transferred due to adhesion is 
discussed in section 4.5.2. In section 4.5.3 the asperity geometry with the hexagon base is 
presented and the deposition of the transferred material on it in section 4.5.4. In section 
4.5.5 the determination of the stresses in the hexagon base are determined, that are used in 
section 4.5.6 to determine the stability and the redistribution or (partly) shear off of the 
transferred material. In section 4.5.7 the influence of different parameters is shown. Lump 
growth presented in these sections deals only with the single asperity case. The multi 
asperity situation is described in chapter 5. 

4.5.2 Volume of transferred material 
Lump growth is based on plastic deformation and the conditions of adhesion. In [39] it is 
assumed that the amount of material that is transferred is proportional to the adhesion force. 
The following steps are made: 

1) It is assumed that material transfer only happens in the wedge formation regime. 
The wedge regime is defined by relations (2.9a) and (2.9b) and shown in figure 
2.10. The material available for transfer will be calculated by the wear rate kw. The 
wear rate is defined as: 

 
nslide

wear
w Fl

V
k =  (4.24) 
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The wear rate in the wedge regime is according to [10]: 
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In equation (4.25) θ is defined as given in figure 2.7. Further, the shear strength k 
is related to the hardness of the material, according equation to (4.11) by: 

 k = 0.18H (4.26) 

2) Only a certain fraction m of Vwear will be deposited on asperities on an area with 
size A, where A is defined as πβ2 and β the summit radius of the asperity. The 
height increase ∆s of the lump can then be expressed as: 

 
A
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A

mV
s nwslidewear ⋅⋅

==∆  (4.27) 

The height increase is the only geometry change of the asperity. The size of A 
results in a height increase ∆s of the whole growing asperity, assuming that the 
asperity is half a sphere with radius β that is attached to the bulk material of the 
tool. 

3) Further, it is assumed that m is proportional to the adhesion force. In [39] m⋅lslide is 
substituted by m1. To make m1 a function of the adhesion force, m1 is substituted 
by m2 times the adhesion force Fa: 

 m1 = m2Fa (4.28) 

Adaptations to the model of De Rooij have to be made, as indicated in the introduction. 
Two issues arise about the material transfer. The first issue deals with the volume that will 
be transferred. The second issue is how the transferred material is distributed over the 
asperity. Only the determination of the volume will be given here. The distribution will be 
discussed in section 4.5.4. 
In equation (4.27) is shown that only a fraction m of Vwear will be deposited on the tool 
surface. In equation (4.28) it is assumed that m is proportional to Fa. In [39] the value of Fa 
is calculated using the relations given in [27] which are given in equation (2.21). These are 
relations that are valid for a sphere in contact with a flat plane. For the case of a polyhedron 
these relations cannot immediately be used. To get a value of Fa or another value that is 
proportional to Fa, another strategy has to be followed. To get such a value, it is assumed 
that the contact of the asperity with the plastic material can be seen as a summation of a 
number of flat-on-flat contacts. According to [26] (and derived in appendix B) the work of 
adhesion per unit area between a flat-on-flat contact is: 
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In relation (4.29) D is the separation between the two surfaces. This relation forms the basis 
of equation (4.23), where the value of D equals D0 (= 0.165 nm). D0 is the separation 
between surfaces, when they are in contact at the atomic scale. From relation (4.29), Fa can 
be derived by taking the derivative of W: 
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From equation (4.30) it follows that Fa is proportional to W, for a fixed value of D. Relating 
this equation to γ results in the following expression for the adhesive stress: 
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From equation (4.31) follows that Fa is proportional to γ. Further, it can be seen that the 
adhesion stress decreases with the third power as a function of the separation of the 
contacting surfaces. That means that a disturbance has a strong effect on Fa. In fact, using 
equation (4.31) gives too high values of adhesion force between surfaces, because it 
exceeds the ultimate tensile strength a lot. In practice disturbances always exist in the 
lattice, like dislocations. Another aspect is the metallic bonding. This results in the high 
value of γ in the case of metals. The effect of the metallic bonding dominates for 
separations up to 0.5 nm. For larger separations the Van der Waals interaction dominates. 
Equation (4.31) is derived on the basis of Van der Waals interaction. The value of γ in that 
relation is too high, because the contribution of the Van der Waals interaction to γ in the 
case of metals is low. In both cases, the metallic bonding and the Van der Waals 
interaction, Fa is proportional to γ and decreases very fast as a function of the separation. 
Therefore, in the current model it is assumed that the volume of the deposited material is 
proportional to the adhesion energy multiplied by the size of the contact area. 
Following the steps that are formulated above on the basis of [39] and assuming that the 
deposited volume is proportional to the adhesion energy and contact area, the following 
relation can be constructed: 

 nwslidefrweartransfer FklcmVV ⋅⋅⋅∆⋅== γ  (4.32) 

In equation (4.32) the variables lslide, kw and Fn are responsible for the wear volume due to 
wedging as given in equation (4.24). To determine the wear rate the value of θ is needed. 
How to calculate θ will be given in section 4.5.4. The multiplication of the variables cfr and 
∆γ gives the fraction of Vwear that deposits on the asperity like m in equation (4.27). Now, 
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the fraction is not related to Fa, but to ∆γ. This prevents that scaling of the asperity lead to 
scaling of Vwear by Fn and m and so Vtransfer will scale quadratic. 
The value of the constant cfr is more or less coupled to the value of m2. If the fraction m of 
equation (4.27) and (4.32) can be taken as equal, the following relation is obtained, from 
which the relation between m2 and cfr becomes clear: 

 γ∆⋅= fr
slide

a c
l

Fm2  (4.33) 

4.5.3 Geometry of the hexagon based lump 
In this section the geometry of the asperity and the deposition of the transferred material 
will be discussed. For the geometry of the asperity a polyhedron with a hexagon base will 
be used, an extension of the asperity geometry as developed in section 4.3. The volume that 
is deposited on this asperity will be determined using equation (4.32). The latest step 
discussed in this section is the deposition of the transferred material. This deposition 
concerns only the transfer of the adhered material. The final geometry of the transferred 
material will be determined by stress analyses as given in succeeding sections. 
In section 4.3 an asperity model is formulated with a symmetrical pyramidal geometry. For 
this geometry mechanical stability analyses are performed. The ideas that are worked out in 
that section will be used for the development of the asperity geometry that will be presented 
here and for the stress and stability calculations in the follow sections. The geometry will 
be extended because of some geometrical limitations of a symmetrical pyramid. The 
symmetry axis of the pyramid should be in line with the sliding direction of it. This limits 
usability of the geometry to an isotropic roughness with contact spots with comparable 
length and width dimensions or with an anisotropic roughness that is aligned with sliding 
direction. Therefore a more flexible geometry will be formulated, that uses a lot of the 
properties of the symmetrical pyramid, but can be used in more general situations. 
The asperity that will be used in the model has a hexagon base as is shown in figure 4.23. 
The asperity can be split up into three parts. The parts I and III are a pyramid and part II is a 
prism. The apexes of the pyramids are connected to the prism. The asperity can be oblique 
as given by the angle α. The highest points of the asperity are formed by G and H. The 
points G and H have the same x and y-coordinates as O and O', points on the line AD. The 
lengths wI, wII and wIII are each independent, although in the galling model wI and wIII will 
be taken as equal for simplicity. Further, the line GH is horizontal and the lines BC and EF 
are parallel to the line AD. In this manner the geometry gives more flexibility to describe 
different asperities. The geometry of the pyramid asperity of section 4.3 can still be 
described, by setting the values of wII and α to zero. Further, more elongated asperities can 
be described and with different orientations. 
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4.5.4 Deposition of transfer layer on hexagon based lump 
The next step is the deposition of transferred material. The volume of the material is given 
by equation (4.32). The wear rate as given in this equation can be found by equation (4.25). 
The attack angle θ can be found as the arctangent of l divided by h. 

 
Figure 4.23. Dimensions of asperity with hexagon base. 
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The question arises how this material is distributed over the surface. Equation (4.32) will be 
used to determine the volume, but also how the material is distributed. The terms that are 
responsible for the amount of Vwear are lslide, kw and Fn. The value of lslide is the same for the 
whole asperity. If a cross section of the asperity is taken parallel to the xz-plane the value of 
θ is the same on every y-coordinate within the asperity. In the case of an ideal plastic 
contact situation Fn per unit area is constant (equals the hardness), the projected area on 
xy-plane is taken as the unit area. Therefore, the thickness of the transferred layer can be 
considered as constant in z-direction. That means that for steeper faces of the asperity the 
thickness of the layer is thinner measured perpendicular to the real surface. 
The strategy that is given above to form a layer on the asperity with a constant thickness in 
z-direction will be followed, but has to be slightly adapted with respect to mass 
conservation, because edges are neglected in this strategy as is shown by the grey layer in 
figure 4.24. So, to fill the edges, the material has to be redistributed. 

The distribution of the transferred material will be done by a constant thickness in 
z-direction, but the thickness will be less than following from equation (4.32). The 
thickness will be reduced to fill the edges at the side and the front, as is given by the dashed 
edges in figure 4.24. The consequence for the geometry means that the width wII remains 
constant during lump growth, but that wI and wIII increase. From the geometry follows that 
the volume of the frontal part of the lump (part where x ≥ 0) is given by: 

 ( )IIIIII 3
6

wwwhlV ++=  (4.34) 

The values of h, l, wI and wIII all have to be scaled with the same factor to get the new 
volume due to the material deposition. The scaling factor cs can be found by solving the 
equation: 
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Figure 4.24. Schematic view of transferred layer on the contact faces as it has only a 
constant thickness in z-direction. The cross sections of the front view (left) and the side 
view are given. 
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The lump that is grown now gets an upright back. Probably, this is not a mechanically 
stable situation. The next section discusses how the lump will deform due to contact forces 
after material deposition. 

4.5.5 Stresses inside hexagon based lump 
In section 4.5.4 it is described how the transferred material is deposited over the asperity. 
After this deposition step, the material only adheres permanently as it can sustain 
mechanical forces. This topic is already described in section 4.3 for a pyramidal asperity. In 
this section the results of section 4.3 will be used to determine the stresses inside the 
asperity, but are adapted such that these can be used for an asperity with a hexagon base. 
From analyses that have been performed on a pyramidal asperity it was concluded that 
equation (4.8) can be used as fail criterion of the asperity when it is loaded due to plastic 
contact. In equation (4.8) the shear stress is determined parallel to the xy-plane. In section 
4.3 this shear stress is determined on the basis of force equilibrium in the x-direction. In 
y-direction no net force is present due to the symmetrical load situation. 
For the model of the asperity with the hexagon base a number of assumptions and results 
will be reused from the pyramid shaped asperity model. As far as possible, the assumptions 
as given in section 4.3.2 remain valid. That means in this situation that the coordinate 
directions still point in the same direction, although the origin is redefined. Further, the 
direction of the contact shear stress is determined by tangential vector on a contact face that 
minimizes the angle with the plastic flow in the far field. The plastic normal and tangential 
stresses remain unchanged. Assumptions on the basis of symmetry are not valid anymore. 
The result of the analyses with the pyramid shaped asperity, that the shear stress parallel to 
the xy-plane can be used as a fail criterion, will be reused. Now, both the stresses in x and 
y-direction are of importance due to the absence of symmetry. 
To calculate the forces the unit vectors as given in the equations (4.5) and (4.6) can be 
reused with some reinterpretation. The lengths l, w and h are real lengths in the case of the 
symmetrical pyramid. At the same time they are the locations where the contact plane 
crosses the coordinate axes. The x-axis is crossed at x = l, the y-axis at y = w and the z-axis 
at z = h. From this point of view, for the unit vectors l and h can be reused, but w has to be 
replaced by the following: 

– Section I: 
αcosI

I
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lww

+
→  

– Section II: αcotlw →  
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Using the same strategy as in section 4.3 the following forces are derived: 
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The derivation of these forces is given in more detail in appendix A. The tangential stresses 
parallel to the xy-plane in both directions are found by dividing the forces as given in 
equations (4.36a) and (4.36b) by the area of the plane ABCDEF, see figure 4.23: 

 ( )( )III2
1

III2
1 wwwllA bABCDEF +++=  (4.37) 

Dividing the forces by the area as given in equation (4.37) can result in an underestimation 
of the tangential stresses, because the plastic forces are not supported by the whole area 
ABCDEF. This is analogous to the situation described in section 4.3.4. To get the proper 
value for the stresses lb has to be replaced by ch. 
The stresses that are determined may not exceed the material strength. Because of the 
absence of symmetry in the asperity, not only the tangential stress in x-direction, but also 
the stress in y-direction has to be taken into account for determining lump failure. The norm 
of the sum of both stress vectors will be used as the fail criterion. 
To present the stresses in the plane ABCDEF, they are calculated for different orientations 
of the asperity related to the ploughing direction. From the elliptic base a hexagon is 
constructed. The construction of the hexagon on the basis of an ellipse will be described in 
chapter 5, where this strategy is used for the conversion from measured data of a surface to 
a set of hexagon based asperities. The idea of the fit is shown in figure 4.25. In this way it 
becomes possible to compare an equivalent asperity for different orientations. This cannot 
be done with only one hexagon, because the hexagon needs lines that are parallel to the 



4.5 Lump growth model 

 

101 

ploughing direction, namely the lines BF and CE as given in figure 4.23, so this hexagon 
base cannot be turned just like that. 
The stresses in the plane ABCDEF and its directions are presented in the figures 4.26, 4.27 
and 4.28. Four situations with different asperity geometries are presented: two different 
shapes of the contact area and two heights. The contact areas are ellipses that are converted 
to hexagons. One shape of contact has a ratio of the major radius a and minor radius b of 
1.5, the other contact has a ratio a/b of 10. The normal load is kept constant. 

 

 
Figure 4.25. An ellipse with a hexagon fit for different orientations φ. For φ = 0° and 
φ = 90° the dimension wII is reduced to 0. 
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a  

b  
Figure 4.26. Normalized mean shear stresses as a function of the orientation φ on face 
ABCDEF for a/b = 1.5 and µ = 0.18 and two different heights: h = 0.1b (a) and h = 0.25b 
(b). The presented shear stress components in x-direction are caused by the plastic normal 
force (1), the plastic friction force (2) and the total plastic force in x-direction (3). The 
presented shear stress components in y-direction are caused by the plastic normal force (4) 
and the plastic friction force (5). The shear stress caused by the total force in y-direction is 
omitted, because it lies almost on line 4. The absolute value of the shear stress on face 
ABCDEF is given by line 6. The asterisks (*) behind the numbers in the legend indicate that 
the values are negative, but are presented as positive. 
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a  

b  
Figure 4.27. Normalized mean shear stresses as a function of the orientation φ on face 
ABCDEF for a/b = 10 and µ = 0.18 and two different heights: h = 0.1b (a) and h = 0.25b 
(b). The presented shear stress components in x-direction are caused by the plastic normal 
force (1), the plastic friction force (2) and the total plastic force in x-direction (3). The 
presented shear stress components in y-direction are caused by the plastic normal force (4) 
and the plastic friction force (5). The shear stress caused by the total force in y-direction is 
omitted, because it lies almost on line 4. The absolute value of the shear stress on face 
ABCDEF is given by line 6. The asterisks (*) behind the numbers in the legend indicate that 
the values are negative, but are presented as positive. The meaning of the different lines 
corresponds to the lines of figure 4.26. 
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The figures 4.26 and 4.27 present the effect of different geometries and orientations on the 
stress situation in the asperity. Here, only the orientations with a positive value of φ are 
shown, because the negative values give no extra information, only the stresses in 
y-direction get a sign change. In the graphs, the stresses are always presented with a 
positive value. In the case of negative values an asterisk (*) is given in the legend of the 
graphs. The graphs will be given some explanation in the same order as the graphs are 
given in the legends. The stresses in x-direction are given in the graphs numbered from 1 to 
3. Graph 1 gives the stress that is caused by the plastic normal pressure on the contact 
planes, graph 2 gives the stress caused by the tangential stresses on the contact planes and 
graph 3 is the sum of both. For the stresses in y-direction only the stresses caused by the 
normal contact pressure and shear stress are given, in graphs 4 and 5, and the sum is 
omitted (nearly equal to 4). The last graph gives the norm of the vector summation of the 
stress in x and y-direction. 
From the graphs in figures 4.26, 4.27 and 4.28 some effects of geometry can be observed. 
In figure 4.26 stresses are plotted for the situation with a low value of a/b. Such geometry 
has the consequence that the asperity is almost loaded symmetrically, which results in a low 
shear stress in y-direction and the magnitude of the stress in x-direction equals almost the 

 

 

Figure 4.28. Orientation of the force on an asperity as a function of the orientation of the 
asperity itself. The angles of both axes of the graph are given in the figure at the right hand 
side. Four different asperity geometries are presented varying the ellipticity ratio a/b and 
the height as a function of b. In all cases µ = 0.18. Presented are the geometries: h = 0.1b, 
a/b = 1.5 (1); h = 0.25b, a/b = 1.5 (2); h = 0.1b, a/b = 10 (3) and h = 0.25b, a/b = 10 (4). 
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absolute value of the stress in the ABCDEF-plane. In the case of a high value of a/b, as is 
plotted in figure 4.27, the orientation of the asperity has a clear effect on the shear stresses, 
because the asperity is not loaded symmetrically. The total load is for most orientations 
more or less the same, only if φ is near 0° where the shear stress is lower, that is the case 
that the frontal area is minimal. The components of the stress in the x and y-direction are 
clearly not constant. For φ = 0° the asperity is loaded symmetrically, so no net force acts in 
y-direction, but if the value of φ increases a bit, the net force acts in the positive y-direction. 
At one side the projected contact area increases, these are the contact areas of section I and 
II as given in 4.23, but at the other side, the area of section III, it decreases. These projected 
contact areas (projected on the xz-plane) are of importance, because the plastic normal 
pressure is the dominant stress component in the y-direction. From figure 4.28 comparable 
conclusions can be drawn about the effect of a high value of a/b on the direction of the 
stresses in the ABCDEF-plane. The height of the asperity is of most importance for the 
effect of the plastic normal pressure. 

4.5.6 Stability and material redistribution of the asperity 
In the former section, stresses are calculated. As long as the material is strong enough, a 
given geometry can be used to calculate the stresses. When the limits of the materials are 
reached, the stress is known and the maximum dimensions of the geometry have to be 
determined. Section 4.5.4 describes how a layer will be deposited on the asperity. The lump 
that forms on the asperity can only grow when it is strong enough and can withstand the 
plastic forces that act on it. To get a stable lump, the following is assumed: 

– If the lump is not stable, material is removed to make it stable again, but none of 
the dimensions will be smaller than before the material deposition. 

– The material strength is taken to be equal to the strength of the deposited layer. 
– The rear side crumbles off, so the rear side gets a slope equal to ∆z/∆x ≈ 0.5. 

These assumptions will be explained in the following. The first assumption has the 
consequence that dimensions become smaller after initial material deposition. So, material 
redistribution is not taken into account where one dimension decreases in favour of another 
one. That dimensions cannot decrease to values lower than before the material deposition 
only has consequences in the beginning of lump growth. The asperity on which the lump 
grows can be too steep according to stability criteria and therefore shear off. But, generally 
speaking, the tool is harder than the sheet material. Therefore, it is assumed that the original 
asperity will be strong enough. Taking the strength of the deposited layer as a criterion, as 
is stated in the second assumption, the height of the lump will only exceed the original 
height of the asperity if the lump itself is strong enough. Once the lump on its own is stable, 
every cycle that a new layer is deposited, the assumption becomes superfluous that none of 
the dimensions will be smaller compared with the situation before the material deposition.  
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The last assumption says that the rear side crumbles off. The value of ∆z/∆x is the 
inverse of c as derived in section 4.3.4. In section 4.3.4 it is shown that the rear part of the 
asperity carries a limited amount of load, only till a length of ch backwards of the loaded 
zone. The deposited layer can be supported in the same manner. The edge at the top can 
only be supported in this manner as the slope at the rear side is not steeper than 1/c. So the 
perpendicular edge as given on the right-hand side of figure 4.24 will not exist in the final 
situation. 
From the assumptions given above, two extremes can be distinguished for the new 
geometry after material deposition and stability step. The most stable one is the one that h, 
wI and wIII get the value as before the deposition of the transferred material and l gets the 
new value that is obtained by the material transfer. The less stable geometry is formed as 
only the rear side of the transfer layer crumbles off. The latter has the consequence that due 
to crumbling off of the rear edge lb will increase and h, wI and wIII decrease a bit in relation 
to the deposited layer. To calculate the new geometry after the stability step, a number of 
steps have to be made. The subscript 0 is used for dimensions of the situation before the 
layer deposition and the 1 as the situation between the deposition and stability step. The 
steps are as follows, using table 4.4: 

1) Calculate the stresses using the dimensions for the most stable case as given in 
column (A). If the stresses are above the strength of the deposited layer, the final 
dimensions become the dimensions of column (A). Otherwise, go to step 2. 

2) Calculate the stresses using the dimensions for the least stable case as given in 
column (B). If the stresses are below the strength of the deposited layer, the final 
dimensions become the dimensions of column (B). Otherwise, go to step 3. 

3) Calculate the dimensions using the relations as given in column (C). The 
dimensions and the stresses can be calculated as a function only of h. The final 
dimensions are determined by the situation that the stresses are equal to the 
strength of the deposited layer. This cannot be determined explicitly, so this 
should be done using an iterative procedure. 

In these calculations lb will be substituted by ch instead of the real physical length in 
backwards direction. The stresses are determined by the vector sum of the shear stress in x 
and y-direction. 
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In the figures 4.29 to 4.31 some results of the lump growth model are shown for a single 
asperity in contact. The three cases that are shown in the figures are all the same, except the 
orientation of the asperity. Starting point for the asperity is again a paraboloid. The elliptic 
base is formed by the major and minor axis a and b. The orientation φ is as given in figure 
4.25. Further, it is assumed that the nominal separation of the contact surfaces is not 
changed by the lump growth of this lump, so the 'original' asperity penetrates the same 
amount in the plastic counter body and the scratch depth in the plastic body increases due to 
the extended lump. The physical values used in the model are given in table 4.5. 
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Table 4.4. Dimensions of asperity after stability step. The values of α 
and wII are omitted, because they do not change. 

 Parameter Value 
a 2.5 μm 
b 0.5 μm 

Asperity parameters 

h 0.3 μm 
T 0.27 
H 1 GPa 

Material parameters 

∆γ 1.1 J m−2 
lslide 0.1 m 
cfr 1⋅10−5 m2 J−1 
µ 0.18 

Other parameters 

number of cycles n 5 
Table 4.5. Physical parameters used in galling model. 
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Using the results of the calculation some characteristics of the model can be shown and the 
effect of different situations on the galling behaviour according to the model. 
In the figures 4.29 to 4.31, in the upper half, the vertical cross section is given at the 
xz-plane, in the lower half the horizontal cross section at the xy-plane. On the horizontal 
cross section an ellipse is shown. This ellipse is the original paraboloid asperity; the 
hexagon that is positioned on the ellipse is its hexagon fit that is used in the galling model. 
The triangle at x = 0 on the vertical cross section belongs to the same fitted asperity. All 
lines in front of the hexagon and the triangle are deposited layers on the asperity. Every line 
gives the situation after one cycle. The parameters that are chosen are the ones the lump has 
already developed in a few cycles. In practice, the lump growth is much slower, otherwise 
the effects of galling would already become disastrous after some tens of products. 
In all cases that are given in the figures the lump does not grow in height during the first 
cycle. The asperity is too steep and therefore not strong enough to enable it to resist the 
internal horizontal shear stresses. In the case of φ = 10° the height still does not increase 
during the second cycle. In these situations the lump grows according to the most stable 
geometry as is given in table 4.4. Once the lump is strong enough, the lump grows 
according to column C or even according to column B as is given in table 4.4. From the 
figures 4.30 and 4.31 it follows clearly that during the second cycle the lump grows 
according to column C. This can be seen by the fact that the lump grows relatively more in 
horizontal direction than in the vertical direction. The last cycles still grow according to 
column C, but this is not immediately clear from the figures, because the numerical values 
differ only one percent or less from the situation given in column B. In these cases the lump 
scales almost proportionally in all directions, except for wII which remains constant. 
A difference in lump growth can be distinguished for the different asperity orientations. 
During the five cycles of material deposition, the total height increase is larger for a larger 
angle φ. Two reasons are responsible for this effect. For small angles of φ, the stresses in 
the asperity are higher due to a large net force in the y-direction. This has to be 
compensated by the formation of a low slope of the asperity. The second reason is a result 
of the first one. Due to the low slope, that means a small attack angle θ, the wear rate 
decreases. As a consequence of the lower wear rate, less material is available for deposition 
on the asperity. In the application of galling, this means that the orientation of asperities 
will have consequences for the severity of galling. A transverse sliding asperity is more 
severe with respect to galling than a longitudinal sliding asperity. 
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Figure 4.29. Lump development on asperity with orientation φ = 10°. 

 
Figure 4.30. Lump development on asperity with orientation φ = 45°. 



110 4 Material transfer and lump formation on a single asperity 

4.5.7 Influence of parameters 
The effect of different parameters in the model will be presented. Similar to the calculations 
belonging to the figures 4.29 to 4.31, the physical quantities are as given in table 4.5, unless 
another value is given. 
The growing behaviour will be presented as a function of the transferred volume and the 
number of products. According to equation (4.32) the volume of the transferred material is 
proportional to the multiplication of cfr, ∆γ and lslide. As only these three quantities are 
changed in such a manner that the multiplication remains constant, the output of the model 
does not change in terms of transferred volume in this example. The number of products n, 
before unacceptable scratching occurs, is more or less related to cfr⋅∆γ⋅lslide. The multiplied 
factor gives the fraction of the transferred volume, but this volume is also proportional to n 
(ignoring the change of geometry after each product that is formed). Therefore, as 
cfr⋅∆γ⋅lslide⋅n is constant, the output of the model should be almost constant. This effect is 
shown in figures 4.32 to 4.34. The lines in the figures are difficult to distinguish, because of 
the very small differences. For all figures the lowest graph belongs to n = 100 and the 
highest graph to n = 10000. 

 
Figure 4.31. Lump development on asperity with orientation φ = 80°. 
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Figure 4.32. Development of the lump length l during lump growth. 
On the horizontal axis the number of formed products are given for 
the case that n = 100. For the case n = 1000 the numbers at this axis 
have to be multiplied by 10, for the case n = 10000 the numbers have 
to be multiplied by 100. The values of cfr⋅∆γ⋅lslide are respectively 
1.1⋅10-7, 1.1⋅10-8 and 1.1⋅10-9 m−1. The orientation is given by φ = 45°. 

 
Figure 4.33. Development of dimension wI of the lump during lump 
growth. The other details are as given for figure 4.32. 
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From the figures 4.32 to 4.34 it follows that first the lump grows in frontal direction, so the 
base of the lump becomes more stable. After the base is stable enough, the lump grows in 
normal direction, such as also shown in figures 4.29 to 4.31. 
Because of the almost constant character for the situations given in figures 4.32 to 4.34 the 
following figures are given only for cfr⋅∆γ⋅lslide = 1.1⋅10-6 m−1 and n = 1000. 
In figures 4.35 and 4.36 the effect of asperity orientation on lump growth is shown. 
Roughly speaking, if φ < 45° the lump grows relatively slowly, if φ > 45° the lump grows 
faster in height. For small values of φ the lump is strongly asymmetrically loaded in 
y-direction as also is shown in figure 4.27 and so, the lump shears off in sideward direction. 
This effect prevents a fast lump growth. Only if φ is around 0° the load in y-direction is 
(almost) symmetric, so the lump can grow faster again. In the case where a tool has 
grinding grooves in the direction of sliding between the tool and the workpiece, the lump 
growth already will be reduced with a small misalignment of the grinding grooves and 
sliding direction. 

 
Figure 4.34. Development of the lump height h during lump growth. 
The other details are as given for figure 4.32. 
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In the figures 4.37 and 4.38 the effect of ellipticity is shown. The effect of ellipticity is 
strong for the case that a/b < 5. In that range the asperity changes from a symmetrically 

 
Figure 4.35. Lump growth dimension l as a function of φ for n = 1000 
and cfr⋅∆γ⋅lslide = 1.1⋅10-6 m−1. 

 
Figure 4.36. Lump growth dimension h as a function of φ for n = 1000 
and cfr⋅∆γ⋅lslide = 1.1⋅10-6 m−1. 
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loaded body to a strong asymmetrically loaded body. For increasing values of a/b the lump 
growth goes very slowly to the state of asperities with infinite width. The lump growth is 
based on the assumption that the lump forms one body that is internally well connected and 
that an ellipsoid can still be used to fit the lump. For large values of a/b, in fact, the asperity 
has a body with 2D characteristics with an orientation φ. So, using the ellipse fit for large 
values of a/b is questionable. 

 

 
Figure 4.37. Lump growth dimension l as a function of a/b for 
n = 1000, cfr⋅∆γ⋅lslide = 1.1⋅10-6 m−1, b = 0.5 µm and φ = 45°. The 
dashed line is the asymptote of a/b → ∞. 



4.5 Lump growth model 

 

115 

The last effect that will be shown is the effect of scale. In the results shown before, b = 0.5 
µm was used. In the figures 4.39 and 4.40 results of b = 0.5 µm are compared with results 
of b = 5 µm. The scale effect is shown for two different ellipticities: a/b = 1.5 and a/b = 5. 
For the case a/b = 1.5 no strong scale effect can be observed. The graphs of l are hardly 
distinguishable. The graphs of h show a small difference, it grows with the same velocity, 
only it is slightly delayed. For case a/b = 5 the differences are slightly larger. Specially for 
the growth in height. But, compared with the differences in starting geometry dimensions (a 
factor 10) the differences in height are relatively small. 
The small differences in dimensions after material transfer can be explained by the fact that 
the deposited layer is in both cases the same. The geometry shape determines the thickness 
of the layer, not the dimensions. As can be seen in figure 4.40 the large asperity needs more 
production steps to fill the 'gap' in front of the asperity, before it grows in height. So, in the 
beginning steps of lump growth, the differences between small and large asperities are 
reduced already. 

 
Figure 4.38. Lump growth dimension h as a function of a/b for 
n = 1000, cfr⋅∆γ⋅lslide = 1.1⋅10-6 m−1, b = 0.5 µm and φ = 45°. The 
dashed line is the asymptote of a/b → ∞. 
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Figure 4.39. Lump growth dimension l as a function of n for different 
sizes of the asperity. For graphs 1 and 2 b = 0.5 µm; for graphs 3 and 
4 b = 5 µm. For graphs 1 and 3 a = 1.5b; for graphs 2 and 4 a = 5b. 
Other values are cfr⋅∆γ⋅lslide = 1.1⋅10-6 m−1, φ = 45° and h = 0.6b. 

 
Figure 4.40. Lump growth dimension h as a function of n for different 
sizes of the asperity. Properties are the same as given in figure 4.39. 
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4.6 Summary 
A single asperity lump growth model is developed. This model is based on observations of 
the experiments in chapter 3. In these experiments, material transfer takes place from the 
sheet material to the scratch pin of tool material. On the pin a lump is formed with a new 
attack angle. The model considers galling as a process that is based on two stages. In the 
first stage material is transferred from the sheet to the tool, which forms a transfer layer on 
the asperity. In the second stage, a part of the transferred layer shears off, when the asperity 
with lump is not strong enough to resist the contact forces. When in the lump the 
mechanical stresses exceed the material strength, a part of the lump shears from it, in order 
to get a mechanical stable stress state within the lump. In this way, the model is able to 
explain the formation of a new attack angle, dependent on the strength of the lump. 
From the parameter study performed with the developed lump growth model some 
conclusions can be drawn. 

– The factors cfr⋅∆γ⋅lslide and n are of great influence. In fact, the factor formed by the 
multiplication cfr⋅∆γ⋅lslide⋅n gives an important factor of the lump growth. A larger 
factor gives a faster lump growth. 

– Lump growth depends on the orientation φ of the asperities. The best orientation of 
the asperity, to reduce the lump growth, would lie in the range 10° < φ < 45°. For 
these orientations the lump has a strong net load in y-direction, which limits the 
lump growth in height. A wide range for φ is given with a relatively low lump 
growth, but if φ increases, the attack angle also increases. An increasing attack 
angle results in a larger wear volume, which result in more pollution of the 
tooling. So, minimizing both, the lump growth and the wear volume, φ should be 
around 10°. 

– Differences in the ratio a/b have a strong effect on lump growth for smaller ratios 
(a/b < 5). Here, also the net load in y-direction increases when a/b goes from 1 to 
5, because of the increasing asymmetry. 

– Up or down scaling of the asperity has a minor effect when the ratio between the 
dimensions remains the same. 

In the cases that are shown of the parameter study, the asperities are in all cases too high to 
form immediately a stable lump. So, n has to exceed a certain number before the lump 
grows in height. In the case which started with an asperity that is flatter than the as few as 
possible stable case, the wear rate would be lower and therefore less wear material that can 
be deposited on the tool surface is available. 
For production practice, the number of products n that can be formed between maintenance 
stops, should be maximized. That means that the factor cfr⋅∆γ⋅lslide has to be reduced. The 
value of lslide is determined by the product, maybe the production process can be changed a 
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bit, but in general this is not the parameter to gain real profit. Assuming that cfr is a constant 
that cannot be changed, the value of ∆γ should be reduced. In the sense of the bulk material 
of the product, this is difficult to realize, but the value of ∆γ can be reduced by 'polluting' 
the surface with a proper lubricant. Before the first layer is deposited on the tool, ∆γ is 
formed by the couple tool material and workpiece material. This is a factor that can be used 
to reduce the material transfer initialization. Another strategy to maximize production is 
grinding the tool surface in a proper manner. One aspect is the attack angle that is created in 
this manner. A small attack angle results in a small wear rate and thereby in a small amount 
of wear volume. Another aspect is the direction of the grinding scratches, because this 
direction determines the orientation of the tool asperities that come in contact with 
workpiece material. The grinding scratches should be more or less in line with the sliding 
direction (with some misalignment, φ = 10°) of the workpiece material over the tool. 
From the single asperity galling model, the influences of different parameters on a single 
asperity are known. In chapter 5 a multi asperity model will be formulated, in which 
operational condition are included, to predict galling in real forming processes. 



 

5 Lump growth multi asperity contact 

5.1 Introduction 
A surface consists of a lot of asperities. In the former chapter a model is derived for a single 
asperity. In this chapter, the model will be implemented for a contact situation of multiple 
asperities. The first step is determining the asperities in contact. A transformation has to be 
made from raw measurement data to a set of asperities that are suitable for the galling 
model. The asperities will be described as paraboloids with an elliptical base. This 
transformation will be presented in section 5.2. 
The galling model that is presented in chapter 4 is based on polyhedron shaped asperities 
with a hexagon base. This hexagon base will be constructed from the elliptical base as 
discussed in section 5.2. The construction of the hexagon base from the elliptical base is 
discussed in section 5.3. The shape of the hexagon is dependent on the scratch direction, 
because it has vertices that are aligned with the sliding direction. In section 5.4 the effect of 
galling is calculated with the set of hexagon based asperities in sliding contact with a sheet 
material. 
A validation of the model with experiments is presented in section 5.5. The development of 
the Galling Performance Indicator and its implementation as a post processor for deep 
drawing simulations is discussed in section 5.6. 

5.2 Contact of elliptic asperities 
For the implementation of contact and wear models on real surfaces the surfaces have to be 
described in a certain manner. The first step is the measurement of the surfaces. The results 
of these measurements will be stored as discretized height data matrices, as is described in 
section 2.2.3. In a lot of situations the height data matrices have to be processed further to 
make it suitable for a model. The steps that are described in this section are the contact 
determination on the meso and micro scale and finally the creation of an elliptic paraboloid 
shaped asperity from the contact on micro scale. 

5.2.1 Meso scale 
The contact on the meso scale will be determined as is described in section 2.2.2. The 
relations (2.2) and (2.3) will be adapted to guarantee force equilibrium. In section 2.2.2 it 
has been assumed that in the formed plateaus full contact exists and the contact pressure 
equals the hardness. In general, these conditions are not satisfied with the contact model of 
the micro scale as given in section 2.2.3. Further, during relative motion of the contact 
surfaces with plastic sheet material, full contact in the plateaus is not possible, because only 
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the frontal half of the asperities is in contact. Therefore, in relation (2.2), α will be split in a 
meso part αmeso and a micro part αmicro, which results in the following relation: 

 Hp micromesoa αα=  (5.1) 

In relation (5.1) αmeso is defined as Aplateaus/An and αmicro defined as Ar/Aplateaus with Aplateaus 
the area of the plateaus. Relation (2.3) will be adapted for calculating αmeso: 
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Relation (5.2) assumed a smooth tool surface. In the case where the tool surface is 
relatively smooth compared to the sheet surface, this gives a good approximation of the 
formed plateaus. Typically, the Rq-value of the tool is a number of times smaller than that 
of the sheet. Sheet materials have mostly an Rq-value of 1 – 2 µm, see for example section 
3.2.2, tool surfaces have mostly an Rq-value of about 0.25 to 0.5 µm. When the surfaces 
have a Gaussian height distribution, the influence of the tool roughness on αmeso is already 
negligible when the roughness of the sheet is three times higher, which can be explained as 
follows. Bringing two surfaces into contact means that the local separation of these surfaces 
equals the subtraction of the individual local surface heights. Addition and subtraction of 
Gaussian distributions results again in a Gaussian distribution in which variance (Rq

2) is the 
summation of the variances of the original distributions. The Rq-value of a surface equals 
the standard deviation of the height distribution. So, if the Rq-value of the sheet is three 
times higher than the Rq-value of the tool, the effect of the variance of the tool is only 10 
percent on the subtracted surfaces. This means 5 percent on the standard deviation. 
To determine the contact area on the meso scale, relation (5.2) has to be solved as an 
implicit relation, because hz is not known beforehand. The sheet surface above the level hz 
forms the contact on the meso scale. When pa and H are known, α follows from relation 
(2.2). However, α is split in αmeso and αmicro, so an assumption will be made about this split. 
A contact between a rigid tool and a plastic sheet with a relative sliding motion should 
typically result in αmicro with a value of 0.5, because only the frontal half of sliding 
asperities are in contact. For special cases, like a tool with a saw tooth surface profile, the 
value of αmicro can exceed this value. In the calculations in this chapter, the value of αmicro is 
assumed to be 0.5. In the explanation of this assumption, two issues have to be taken into 
account. The formation of plateaus is a plastic deformation process, so high pressures are 
needed, in the order of the hardness. But, as explained above, during sliding, in 
combination with most tool surfaces, only half of the plateau surface can be in contact. In 
order to have an as high as possible pressure as well as half of the plateaus in contact 
αmicro = 0.5 is required. From this assumption, it follows that αmeso = 2α. 
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5.2.2 Micro scale 
On the micro scale, the contact will be determined on the plateaus that are formed on the 
meso scale, as presented in section 5.2.1. The contact will be described as a contact 
between rigid elliptical paraboloid tool asperities in ideal plastic sheet material. The 
plateaus are assumed to be flat, so the tool asperities come into contact with a flat plane. 
The description of a surface by elliptic paraboloid shaped asperities means a simplification 
of the real surface. The roughness measurement that is stored in a matrix with height data 
consists of the real surface within a certain frequency range in the spatial domain. The 
minimal spatial frequency is determined by the dimensions of the measurement area, the 
maximum spatial frequency by the spatial resolution. Within this range the data set is an 
exact representation of the surface, leaving measurement errors out of consideration. Using 
the description of the surface by a set of elliptic paraboloid shaped asperities reduced the 
amount of data enormously, because a total description of the surface is replaced by a set of 
asperities that are given by a number of parameters like the radii, the orientation and 
location. Further, the description is dependent on the contact conditions. The number and 
the size of the asperities are related to the contact situation, as is shown in figure 5.1. 

As a basis of the determination of the asperities, the approach of Masen [36] will be used. 
Here, a contact model using a deterministic approach is presented. The input variables are 
two contact bodies with their surface geometry and their relevant physical properties for 
contact like the modulus of elasticity and hardness. In [36] one of the surfaces is assumed 
to be flat. Further, the normal force is needed to calculate the separation and related to this 
the contact spots. The contact is determined by using the condition of force equilibrium, as 
given in the following equation: 

 ∑=
i

nin FF  (5.3) 

In equation (5.3), the general part of equation (2.6) is repeated. Usually, the force Fn is the 
known quantity and the values of Fni are the unknowns. The values of Fni are unknowns in 
two ways. The contact force of an individual contact spot is unknown, but also the number 
and shape of these contact spots. That the number of contact spots changes during loading a 

 
Figure 5.1. Asperity definition at different surface separations, after [36]. 
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surface can be seen in figure 5.1. At the separation given by h1 there is one contact spot. 
Increasing the load that leads to a separation of h2, two spots are in contact. Halfway h2 and 
h3 both contact spots are merged. For every separation, the definition of the asperity 
belonging to a contact spot changes as is shown at the right-hand side of the figure. In 
general, equation (5.3) can be solved by iterating over the separation. 
The contact force of an individual contact spot depends on the material properties and the 
surface geometries in combination with the separation. In the case where a rigid rough 
surface comes in contact with an ideal plastic flat surface, solving equation (5.3) can be 
simplified. Assuming that the contact pressure in the real contact area equals the hardness, 
the total real contact area is already known as the normal force divided by the hardness. The 
contact spots are found by the separation that causes an intersection area equal to the real 
contact area. This can be done using the following relation: 
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The function φtool_on_plateaus is the height density function of the tool surface in plateau 
regions. Relation (5.4) has to be solved like relation (5.2) to find the contact spots on the 
plateaus. 
The contact according to relation (5.4) is determined for the static case. During a sliding 
contact, only the frontal part of the asperities is in contact. To satisfy normal force 
equilibrium, the asperities have to penetrate further into the sheet plateaus. This will be 
done with the set of asperities defined for the static case, so no new set of asperities will be 
defined for the sliding contact. 
The strategy to determine the contact spots on the plateaus has some consequences for the 
determination of asperities. Only asperities or the parts from an asperity within the plateaus 
are taken into account. So, an asperity determined according to this method can have 
smaller dimensions than the real asperity. In the case of very long asperities, like on 
grinded tool surfaces, it can be in contact with more than one plateau. Every separate 
contact spot of the real asperity forms a separate model asperity. So, one real asperity can 
be split into more model asperities. Parts of the tool outside the plateaus are neglected. 
Once the contact spots are known, an elliptic paraboloid is fitted through the height data 
belonging to the contact spot. Two constraints will be given: the contact area and the 
volume enclosed by the separation plane should be equal for the real surface geometry and 
the paraboloid [35]. The first constraint results in an equal hardness, namely the normal 
force is carried by the same contact area. The second constraint results in the same work of 
penetration, namely the hardness times the volume of the moved material. To define the 
paraboloid, the unknowns are the major and the minor radius of the ellipse a and b at the 
separation plane, the orientation φ and the height s. The definition of a, b and φ are given in 
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figure 5.2. The values of these quantities are calculated using the second moments of area 
with respect to the centroid of a contact spot. Using nth order moments of area for pattern 
recognition in digital images is a concept published by Hu [25]. Chaudhuri [12] uses the 
second moments of area with respect to the centroid for fitting an ellipse through a 2D 
object. The contact spots and their properties are determined using a discretized height data 
map, so the integrals given below can be written as a summation. The following relations 
are used: 
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In the relations above ∆x and ∆y are the distances in x and y-direction between 
measurement points on the surface, xc and yc are the coordinates of the centroid of the 
contact spot, xi and yi are the coordinates of measurement point i from the set of n points 
that forms the total contact spot. The terms (∆x)2/12 and (∆y)2/12 give the second area 
moment of a single data point with respect to its own centroid using an area of ∆x times ∆y. 
In [12] these terms are omitted and only the displacement parts, like xi − xc, are used from 
the parallel axis theorem of Steiner. In the calculations presented in this chapter the 
equations (5.5a) to (5.5c) will be used. For contact spots that consist of very few data points 
or are very narrow in one direction, the extra term makes sense. 
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There exists a unique ellipse that has the same second moments of area with respect to the 
centroid as calculated with the equations (5.5a) to (5.5c). This ellipse will be determined 
and scaled, so the contact size of the paraboloid will be equal to the real contact spot. Using 
Mohr's circle it follows that: 
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In equation (5.6c) atan2(y, x) is the four-quadrant extension of the arctangent that gives the 
angle between point (x, y) and the positive x-axis. In this manner the range of the arctangent 
is extended from φ ≤ 0.5π to the needed φ ≤ π. 
The ellipse that has to be determined has the following second moments of area: 
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Figure 5.2. Elliptic base of an asperity and its transformation to a 
hexagon base. 
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The values of a and b can be immediately solved by making Imax of equation (5.7a) equal to 
the one of equation (5.6a) and Imin of equation (5.7b) equal to the one of equation (5.6b). 
Due to the final scaling of the ellipse to get equal sizes of the real contact spot and the 
ellipse contact, the ratio a and b is of more importance, which is given by: 
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From equations (5.6c), (5.8) and (5.9) the values of a, b and φ can be calculated. The height 
s will be defined as given in figure 2.8. In this figure h is the separation between the 
nominal surfaces of the contact bodies and s the height of a single asperity. So, the 
penetration of a rigid asperity in the ideal plastic body is given by s − h. The penetration 
can be determined by the constraint of volume conservation. This results in: 
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In equation (5.10) is V the volume of asperity above the z-coordinates h which can be 
determined using a summation of the height data si from the height data matrix: 

 ( )∑
=

−∆∆=
n

i
i hsyxV

1
 (5.11) 

The major and minor radius of the asperity surface Ra and Rb are given by: 
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Using the strategy as given above, all the information of an asperity is obtained. Its in-plane 
location is the centroid of the contact spot. Other parameters that can be determined are its 
height h, major and minor radius Ra and Rb and its orientation φ. 

5.3 Conversion from ellipse to hexagon based asperity 
For the galling model that is presented in chapter 4 a polyhedron shaped asperity with a 
hexagon base is needed. The construction of this asperity will be presented in this section. 
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Starting point is the geometry of an ellipse, as given in figure 5.2 and calculated in section 
5.2. An ellipse is defined by its two main radii, the orientation and the position on a plane. 
Here, the origin of the coordinate axes is positioned on the centre of the ellipse. The x-axis 
points in sliding direction, the z-axis is perpendicular on the nominal surface. The y-axis is 
perpendicular on the other two coordinate axes. The major radius has length a, the minor 
radius has length b. The orientation will be given by φ, the angle between the major axis of 
the ellipse and the x-axis. The value of φ can differ from the φ as calculated in section 5.2 in 
the case where the height measurement is not aligned with the sliding direction. The 
domain of φ is limited by −0.5π < φ ≤ 0.5π, because of symmetry and to prevent multiple 
definitions of one ellipse. 
The hexagon is constructed by constructing the elliptic base in this coordinate system. The 
extremes in y-direction form the first two points. The next two points are the extremes in 
x-direction. The last two points are found by finding the two other points with the same 
y-coordinates as the former points. The points that are found on the ellipse are given in 
figure 5.2 by the dashed hexagon ABCDEF. The next step is to scale the hexagon, so the 
hexagon gets the same surface area as the ellipse. 
The dimensions of the hexagon that will be used in the galling model are given in figure 
5.3. In this figure, the hexagon has more degrees of freedom than follows from the ellipse 
as given in 5.2. In the case of elliptical asperities it is assumed that an asperity can have an 
orientation, but that it has comparable dimensions at both sides of the major axis. Due to 
galling, material is deposited at one side, so a kind of symmetry will be gone. Compared 
with the hexagon as given in figure 5.2, the number of degrees of freedom should be 
reduced. In order to do this, the lengths in x-direction l and lb are taken as equal in the 
ellipse just as wI and wIII. 
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The ellipse as shown in figure 5.2 can be given, in a parametric form with parameter t, as: 

 tbtax sinsincoscos φφ −=  (5.13a) 

 tbtay sincoscossin φφ +=  (5.13b) 

The six vertices of the hexagon are determined, using equations (5.13a) and (5.13b). These 
points will first be derived for the case that 0 < φ < 0.5π. Point F is defined by the location 
on the ellipse with the maximum x-coordinate. The value of tF of this point is given by: 

 
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−= φtanatan
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btF  (5.14) 

The subscript that is used for t gives the vertex to which the value of t belongs. In the 
following part, these subscripts will also be used for the x and y-coordinates. 
Point A is defined by the location on the ellipse with the maximum y-coordinate. The value 
of tA of this point is given by: 

 
Figure 5.3. Dimensions of the hexagon base. 
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Relations (5.14) and (5.15) can be found by the derivatives of the equations (5.13a) and 
(5.13b) with respect to t. On the extremes, one of derivatives is zero. 
Point B is the point on the ellipse that has the same y-coordinate as F, but is on the other 
side of the major axis of the ellipse. To find tB equation (5.13b) is rewritten to: 

 ( )Attbay −+= coscossin 22 φφ  (5.16) 

Using the symmetry of the cosine and that yB equals to yF, it follows from equation (5.16) 
that: 

 ( ) FABAFAB ttttttt −=⇒−−=− 2  (5.17) 

The coordinates of F, A and B are found by using the results of relations (5.14), (5.15) and 
(5.17) in equations (5.13a) and (5.13b). The coordinates of C, D and F are given by: 

 ( ) ( )FFCC yxyx ,, −=  (5.18a) 

 ( ) ( )AADD yxyx ,, −=  (5.18b) 

 ( ) ( )BBEE yxyx ,, −=  (5.18c) 

For the case that −0.5π < φ < 0 the relations (5.14) to (5.17) cannot be used immediately. 
Some fundamental properties of the combination of the hexagon and the ellipse change. 
Vertex F loses its extreme x-coordinate and E gets it. The same change happens for vertices 
C and B. The following relation can be derived for this situation: 
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The relations (5.13a) and (5.13b) and (5.18a) to (5.18c) remain valid for −0.5π < φ < 0. 
There are a few special cases where the hexagon reduces to a quadrilateral: 

– The radii a and b are equal. The hexagon base reduces to a square with two 
vertices on the x-axis and two vertices on the y-axis. 

– The orientation of φ is 0. The hexagon base reduces to a rhombus, with the 
vertices determined by the major radius on the x-axis and the vertices determined 
by the minor radius on the y-axis. 
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– The orientation of φ is 0.5π. The hexagon base reduces to a rhombus, with the 
vertices determined by the minor radius on the x-axis and the vertices determined 
by the major radius on the y-axis. 

The ellipse is used as a tool to construct the shape of the hexagon. The coordinates that are 
used for the ellipse are local coordinates with the origin at the centre of the ellipse. Now, 
the interesting dimensions of the hexagon are defined. Finally, the hexagon must have a 
proper surface area, so it will be scaled proportionally in x and y-direction, that the surface 
area equals the surface area in the original contact spot. 
The dimensions of the hexagon are determined as follows: 

– The values of wI and wIII are equal to yA − yF. 
– The value of wII equals yF − yE, that is the same as 2yF. 
– The values of l and lb are equal to 0.5(xF − xB). 
– The value of  α = −atan(xA/yA). 

The last step is the scaling of the hexagon. The scaling is determined by the surface area of 
the contact spot. The ellipse has a surface area size of πab. The area of the hexagon is 
(xF − xB)(yA − yE). The area of the hexagon is smaller than the ellipse, because it is an 
inscribed polygon of the ellipse. So scaling results in a hexagon that is larger than the one 
that is determined until now. The dimensions wI, wIII, l and lb will be scaled. This scaling 
method scales the triangles ABF and CDE proportionally, the parallelogram BCEF scales 
only in x-direction. The scaling factor of these dimensions can be calculated using the 
dimensions of the original ellipse and the dimensions of the hexagon as they are determined 
until now by: 

 
( )

( )IIII

IIII
2

II
2

II

wwl
wwablwllw

cscale +

+++−
=

π
 (5.22) 

Although proportional scaling of all dimensions is an easier method, this method will not 
be used, because it gives bad results in the case of high values of the ratio of a and b. This 
can be explained using figure 5.2 where an ellipse is shown with a ratio of a and b of 3. On 
the x-axis the hexagon is much more slender than the ellipse. That means that the ellipse 
scales with a relatively large scaling factor. This scaling corrects the size of the area, but in 
absolute values the hexagon is much more scaled in y-direction than in the x-direction, 
which results in an asperity with a too large frontal area due to the excessive y-extremes. 
The construction of the hexagon base is described. The next step is the determination of the 
asperity height. The same constraints are still used as in section 5.2, that means that both 
the volume and the contact spot of the asperity have the same size as on the real surface, so 
the volume of the asperity with the hexagon base equals the volume as given in equation 
(5.11) also in this situation. The height is: 



130 5 Lump growth multi asperity contact 

 ( )( )bllwww
Vhs

+++
+=

IIIIII 3
6  (5.23) 

The steps that are made from surface height data to the construction of polyhedron shaped 
asperities with a hexagon base are shown in the scheme in figure 5.4 and a graphical 
presentation is shown in figure 5.5. In figure 5.5, the sliding direction is not as is usual from 
left to right, but in the direction that is given with the small arrow v. With this changed 
direction, the lines BF and CE get another orientation, which means another definition of 
the hexagon. 
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Figure 5.4. Determination of contact and polyhedrons with hexagon 
base. 
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Figure 5.5. Determination of the asperities. At the top are the surface measurements 
(255×215 µm) of the sheet (left) and the tool (right). Beneath are the plateaus (left) and the 
contact spots of the tool with plateaus (right). The contacts are the dark grey areas on the 
light projections of the plateaus. At the bottom the fits are shown of the ellipses and 
hexagons for a part of the measured area. The arrow v gives the sliding direction, which is 
relevant for the orientation of the hexagons. 
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5.4 Galling calculations 

5.4.1 Calculations for a model system 
To calculate galling for the multi asperity contact between a tool and sheet surface, the 
single asperity growth model as developed in chapter 4 will be combined with the contact 
model and asperity definition as developed in the sections 5.2 and 5.3. 
For combining the single asperity lump growth model with the contact model some extra 
steps have to be taken. After determination of the asperities the lump growth calculation has 
to be performed over all the asperities. According to the contact model that is used, plateaus 
are formed and the tool asperities are only in contact on the plateaus. That means that 
asperities are only a fraction of the sliding length lslide in contact. The fraction of plateaus on 
the surface is αmeso, so the average contact length of an asperity reduces by the same 
fraction αmeso and becomes αmeso⋅lslide. Before the calculation of the lump growth is 
performed, the separation distance is calculated from normal force balance using the 
contact model. Due to lump growth, the contact area increases for a given separation of the 
surfaces and as a result, the normal force increases. Therefore, after lump growth the 
separation of the surfaces has to be calculated again in order to maintain normal force 
equilibrium. In the lump growth model a set of hexagon based polyhedron asperities is used 
and with this set the separation between the surfaces will be recalculated after a lump 
growth step. During sliding, the area ADEF as shown in figure 5.3 is in contact, so this area 
will be used for calculating the separation. 
The implementation of the multi asperity galling model is given schematically in figure 5.6. 
The lump growth calculation over all the asperities is given in figure 5.6 by the block 
'Determination lump growth due to galling'. This block is in fact a loop over all individual 
asperities. 
Thermal effects as presented in section 2.3.1 are not taken into account in the calculation 
for reasons of clarity. It is assumed that the thermal effects are a part of the constant cfr. In 
the case of a low thermal load, cfr will have a lower value. 
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A number of calculations are performed which will be presented in the following figures. 
For the calculations, a set of physical quantities is given in table 5.1. Using equation (5.1) 
with the data of table 5.1 it follows that α = 0.2. The used surfaces are a grinded tool 
surface with Rq = 0.23 µm and a sheet material with Rq = 2.0 µm. These surfaces are shown 
in figure 5.5 and are actual measurements of a sheet and a tool surface. The angle between 
the grinding direction of the tool surface and the sliding direction that is used in the 
calculations is 10°. In figure 5.7 and 5.8 the height and the fraction of asperities in contact 
are shown as a function of production cycles. In figure 5.9 and 5.10 the penetration δ of 
every individual asperity is shown versus the total width wtotal of the scratch that it causes. 
Here, wtotal is defined as a sum of wI, wII and wIII as shown in figure 5.3. The penetration 

 
Figure 5.6. Scheme of the implementation of the multi asperity galling 
model. 
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equals the height of an asperity minus the separation as given in figure 5.7 by graph 1. An 
average scratch depth could be calculated by the difference of graph 1 and 2 in figure 5.7. 
In figure 5.9 and 5.10 only the asperities are shown that are still in contact. The asperity 
sets given for n are 0, 10, 100 and 1000. The asperities that are still in contact for n = 1000 
are marked in all the plots by asterisks. 

    

    

 Parameter Value 
pa 50 MPa Contact parameters 
αmicro 0.5 
T 0.27 
H 0.5 GPa 

Material parameters 

∆γ 1.1 J m−2 
lslide 0.1 m 
cfr 5⋅10−6 m2 J−1 

Other parameters 

µ 0.18 
Table 5.1. Physical parameters used in galling model. 

 
Figure 5.7. Height of the asperities as a function of the number of 
products n. Graph 1 shows the separation increase of the contact 
surfaces due to lump growth, graph 2 the mean height of the lumps 
that are still in contact and graph 3 the height of the highest lump. 
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Figure 5.8. The fraction of the asperities that are still in contact as a 
function of n. 
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a  

b  
Figure 5.9. Cloud plots of the depths versus the width of the scratches from the asperities 
that are still in contact. It shows the start situation, n = 0 (a) and the situation for n = 10. 
The asperities that are still in contact for n = 1000 are marked by an asterisk. 
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According to figure 5.7 the average lump height is almost linear as a function of the 
number of product cycles. For the first products, n < 100, the graphs show a smaller amount 
of lump growth. According to figure 5.8, for n < 70 all the asperities are still in contact. 
After n = 70, the fraction of the asperities that are in contact decreases very fast. So, with 
this decreasing fraction, fewer and fewer asperities are subject to lump growth. The scratch 
development caused by individual lumps is shown in the figures 5.9 and 5.10. The 

a  

b  
Figure 5.10. Cloud plots of the heights versus the width of the scratches from the asperities 
that are still in contact for n = 100 (a) and n = 1000 (b). The asperities that are still in 
contact for n = 1000 are marked by an asterisk. 
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scratches caused by asperities that remain in contact at least to n = 1000 are marked with an 
asterisk. Some effects can be observed by tracing the asterisks in the different cloud plots. 
These asperities on the initial tool surface are not necessarily the highest asperities, but 
these are the fastest growing asperities. This effect can already be observed for the first ten 
product cycles as follows from the figures 5.9a and 5.9b. This effect is continued for the 
following product cycles according to the figures 5.10a and 5.10b. According to the figures, 
it seems that these asperities tend to develop a geometry with a width-height ratio of 5, 
which is shown by the dashed lines in the figures 5.9 and 5.10. This effect cannot be 
observed for the galling calculations in general, it is related to this particular tribological 
system. Much smaller width-height ratios than 5 are unlikely, because in that case the 
asperities become mechanically too weak. Larger width-height ratios exist for situations 
when many asperities have a large value of wtotal, for example, when the angle between the 
grinding direction of the tool surface and the sliding direction is large. One scratch 
belonging to such asperity (focussing on the asterisks only) is given in the cloud plots of 
5.9 and 5.10 by the furthermost right asterisk. 
An increasing height of asperities and a decreasing number of asperities that carry the 
normal force has consequences for the contact situation. If the lump growth is very local, 
then at that location, the surface is highly elevated over the neighbouring surface area. This 
will result in a normal force concentration. This force concentration leads to more 
penetration of the lumps in order to satisfy the normal force equilibrium. When the lumps 
are still small, only a small approach of the surfaces results in more asperity contacts, but 
this approach has to be increased for the case of higher, but fewer asperities. That situation 
makes the surface more sensitive to severe scratching of the lumps. 
Most quantities that are given in table 5.1 are strongly dependent on the properties of 
contact bodies. On the other hand pa is strongly dependent on the process conditions and is 
a function of the location on the tool and the punch displacement in a deep drawing 
process. The effect of pa will be shown in the figures 5.11 and 5.12. In these figures the 
height and the number of asperities in contact, so the asperities still growing, are shown as a 
function of pa for n = 1000. 
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Figure 5.11 shows almost a linear relation between the apparent pressure pa and the galling 
effect, so proportionality between local contact pressure and galling sensitivity in a deep 

 
Figure 5.11. Height of the asperities as a function of pa for n = 1000. 
The graph shows the mean height of the lumps that are still growing. 

 
Figure 5.12. The fraction of the asperities that are still in contact as a 
function of pa for n = 1000. 
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drawing process can be expected. For example on the die radius, a location with high 
contact pressure is a sensitive region for galling. 
According to lump growth calculations with a single asperity as performed in section 4.5.7, 
the lump growth is very sensitive to the orientation of the asperity, as can be concluded 
from figure 4.36. The effect of the orientation is also investigated for the multi asperity 
case, using the measured (grinded) surface. In this investigation the orientation φ is defined 
as the angle between the grinding direction and the sliding direction. In the former 
calculations φ = 10°. In figure 5.13 and 5.14 some results of the calculations are presented. 
From these calculations it follows that the relation between the orientation and the lump 
growth is very weak for a multi asperity contact. This weak relation is in contrast to the 
single asperity case. In figure 5.13 the highest height is only 14 percent above the lowest. 
Analysing the calculation data in more detail, it reveals that the typical long asperities of a 
grinded surface behave in the manner such as presented in section 4.5.7. However, a 
grinded tool surface consists of long asperities, but also of short asperities, which means 
asperities with a major and minor radius that are almost equal. The lump growth of the 
short asperities is almost equal for all orientations, for the long asperities it is very sensitive 
for φ. This effect explains in figure 5.14 the lower part of the graph for φ < 30°. For the low 
values of φ the long asperities grow much less than the short ones, so after a number of 
cycles, more and more long asperities lose contact. The effect of φ on the growth in height, 
as shown in figure 5.13, is weaker. In figure 5.13 the situation is given for n = 1000. For 
lower values of n the effect of φ is stronger. For these lower values of n, when long 
asperities are still in contact, these asperities carry a part of the load, but for low values of φ 
they only contribute a little to the lump growth. When n increases, the number of asperities 
that are in contact may reduce, but the growing speed is at that moment determined by the 
fast growing lumps that are still in contact. 
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Figure 5.13. Lump growth of asperities as a function of φ for 
n = 1000. The graph shows the mean height of the lumps that are still 
growing. 

 
Figure 5.14. The fraction of the asperities that are still in contact as a 
function of φ for n = 1000. 
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To compare different materials, the strength of the transferred material has to be taken into 
account. This effect is shown in figures 5.15 and 5.16. The strength is given as the 
dimensionless shear strength T, defined as the shear strength divided by ppl. When there is 
no hardening of the material during material transfer, the value of T is 0.18, which follows 
from equation (4.11), assuming that ppl equals the hardness of the sheet material. When 
there is hardening due to the transfer, the value of T increases. So, the value of T can be 
interpreted as the hardening effect on the transferred material. 

    

 
Figure 5.15. Height of the asperities as a function of T for n = 1000. 
The graph shows the mean height of the lumps that are still growing. 
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From figure 5.15 it follows that for an increasing value of T, lump growth increases. 
According to figure 5.16 the effect of T on the fraction of asperities that is still in contact 
for n = 1000 is significant for T < 0.25. The fraction decreases rapidly for 0.19 < T < 0.25. 
For increasing T, the lumps become stronger, so a set containing fewer lumps is able to 
resist the contact forces. When T exceeds 0.25, the strong relation with the fraction is no 
longer observed. The situation of T = 0.18 is a special one, because material hardening is 
absent. When T = 0.18 a lump cannot grow in height, but the tool surface can still be filled 
with transferred material between the asperities. Due to this effect the lowest asperities lose 
contact, which explains the part of the graph in figure 5.16 for T < 0.19. 
From these calculations it follows that when a sheet material has a stronger hardening effect 
due to material transfer, the lumps can grow more in height. So, less hardening results in 
fewer high lumps. This effect does not hold for almost no hardening. In that case it is 
calculated that a smeared layer is transferred to the tool surface, which is often visible when 
processing zinc coated steel. 
The possibility of lump growth for work hardening materials can be observed in real 
practice on aluminium and stainless steel sheet material. Aluminium sheet AA5182 has a 
yield strength σy of 130 MPa and an ultimate strength σm of 275 MPa. According to these 
values T can get the value (0.18 × 275 / 130 =) 0.38. For T = 0.38, the galling process 
operates in the region with maximum lump growth according to figure 5.15. Higher values 
of T show no significant extra lump growth. Using the hardness of AA5182 sheet material, 
about 680 MPa (see table 3.3), in equation (4.10) the yield strength is about 243 MPa. This 

 
Figure 5.16. The fraction of the asperities that are still in contact as a 
function of T for n = 1000. 
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value is much higher than the bulk yield strength, because the surface of sheet material is 
already hardened during production by the rolling process. This effect apparently lowers the 
value of T. However, another effect is that the ultimate strength is determined using the 
stress-strain curve that is based on the apparent stress, while in the case of galling the actual 
stress is relevant, which has a higher value than the apparent stress. Hence, it can be 
concluded that both terms in the ratio T, when applied to their surface, the yield strength as 
well as the surface ultimate strength, are underestimated when bulk properties are used in 
the calculation. Therefore, the ratio of bulk yield strength and bulk tensile strength will be 
used for calculating a good approximation of the T value at the surface. 
According to De Rooij [39], stainless steel AISI304 is characterized by σy = 195 MPa and 
σm = 500-700 MPa. This results in T ≈ (0.18 × 195 / 500 ≈) 0.55. Similarly, steel A620  
is characterized by σy = 270 MPa and σm = 350 MPa. This gives 
T = (0.18 × 350 / 270 =) 0.23. These values correspond to the industrial experience that 
stainless steel is very sensitive to galling. 

5.4.2 Consequences for galling in deep drawing processes 
A galling model is developed for a multi asperity contact. Calculations have been 
performed for a model system. Two quantities that follow from the calculations are used as 
an indicator of the galling behaviour as mentioned in the block 'Galling Performance 
Indicator' in the scheme of figure 5.6. These quantities are the average lump height and the 
fraction of the asperities that are still in contact after a certain number of cycles. The 
difference between the lump height and the separation between the contacting surfaces can 
be used to determine the scratch depth caused by a lump. The lump height in combination 
with the fraction of asperities that are still in contact gives the sensitivity for scratching. 
From the results that are obtained using the galling model some consequences can be given. 

– A higher contact pressure results in more lump growth, because the fraction of the 
sheet material that comes in contact is larger due to this higher pressure. This 
means that locations like die radii are expected to be sensitive for galling. 

– More work hardening of transferred material results in more lump growth. Due to 
the higher strength, a higher lump is still able to resist the contact forces. So, 
increasing the surface hardness of the sheet, for example by cold rolling, reduces 
lump growth in height and because of this the scratch depth. 

– In the case of plastic bulk deformation in in-plane directions of the sheet the 
effective hardness of the sheet decreases, so ppl decreases. When the apparent 
contact pressure pa remains constant, α will increase, because a larger bearing area 
is needed in the case of a lower effective hardness. As a result T increases, because 
the strength of the lump will now be normalized by a smaller value of ppl. So, for 
the case of a lower effective hardness the lump growth increases by both of the 
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effects that are mentioned in the two former points. This means that in a press, 
locations with high strains are sensitive to galling. 

5.5 Comparison between model and practice 
In order to validate the galling model developed in chapter 4 and the first sections of this 
chapter, tests are performed with the TNO slider-on-sheet tribometer [19], which is in 
principle the same tribometer as presented in [15]. The slider-on-sheet tribometer is a tester 
which is used to simulate the deep drawing contact on lab scale. The slider makes parallel 
tracks on sheet material, as shown in figure 5.17. The parallel tracks always ensure that a 
fresh part of sheet material is in contact with the slider. The slider is made of tool steel and 
represents the tool in the tests. Its shape is a disk with a radius in sliding direction and in 
perpendicular direction, in order to create a well defined contact. This slider is on every 
track in contact with fresh sheet material, like a real tool in every production cycle. The 
analogy of the TNO slider-on-sheet tribometer with the Ploughing Asperity Tester, as 
discussed in section 3.1, is that a sample, representing the tool, is always in contact with 
fresh sheet material. However, the TNO slider-on-sheet tribometer performs the tests on a 
larger scale. The slider corresponds to a part of the tool surface, instead of only one 
asperity. Further, the total sliding distance is in the order of real tools. The sliding tracks are 
made in x-direction. After a track, the slider is lifted from the sheet and returned to its 
starting x-position and moved 1 mm in y-direction after which the following track is made. 
In this way 1 km sliding distance is realized on one square metre of sheet material. 

Two tests are performed that are compared with the developed galling model. In both tests 
the slider is made of cast iron GGG 70L, Rq = 1.0 µm. The diameter of the disk is 44 mm, 
so the radius in sliding direction is 22 mm, the radius in perpendicular direction is 6 mm. In 
both tests the type of sheet material is also equal, namely aluminium AA 5182. The 
difference in the sheet material is the surface texture. One test is performed with a mill 
finished texture AA 5182 MF, Rq = 0.4 µm and one with an electrical discharge texture 

 
Figure 5.17. Schematic drawing of the TNO slider-on-sheet test, [19]. 
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AA 5182 EDT, Rq = 1.4 µm. The tests are performed with a normal load of 100 N, the 
sliding velocity is 0.05 m s−1. The sheets are lubricated with N 6130. 
From an investigation of the plastic deformed tracks on the sheet and the operational 
conditions it follows that in the contact pa ≈ 180 MPa. In combination with the hardness of 
the sheet material, H = 650 MPa, it follows that α = 0.27. 
The tracks on the sheet of AA 5182 MF are investigated after a total sliding length of the 
slider of 600 m. The grooves that are formed within the tracks have a depth of about 5 µm. 
For AA 5182 EDT the tracks are investigated after a total sliding distance of the slider of 
900 m. The grooves that are formed in the track are in the order of the roughness and are 
hardly distinguishable from the roughness. Profiles of the tracks are shown in figures 5.18 
and 5.19. 

    

 
Figure 5.18. Height profiles on AA 5182 MF sheet material of the first 
(top) and last (bottom) sliding track. 
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The contacts of the tests are also simulated in the galling model. Almost all parameters are 
equal for both tests, with the exception of the sheet surface texture. For the case of 
AA 5182 EDT the input of the model consists among other things of representative surface 
geometries, α = 0.27 and αmicro = 0.5, a strategy similar to the former section. The value of 
αmeso can now be determined from α and αmicro. With these values, the contact on the meso 
scale can be determined followed by the contact on micro scale. For AA 5182 MF the meso 
scale has to be omitted, because the tool is much rougher than the sheet, so the assumption 
of the formation of plateaus on the sheet is no longer valid. Therefore, αmicro equals α. So, 
the only important difference between the two calculations is the presence of the meso scale 
in the contact modelling. Other physical values that are used in the calculation are given in 
table 5.2. Some explanation will be given about the values in this table. The used value of T 
for AA 5182 is derived in section 5.4. The value of cfr is adapted to scale the obtained 
results with the experiments. In the calculations of section 5.4 an arbitrary value of cfr is 
chosen for presenting the model. Here, the value can be adapted to the reality. Results of 
the calculations are shown in figure 5.20. 

 
Figure 5.19. Height profiles on AA 5182 EDT sheet material of the 
first (top) and last (bottom) sliding track. 
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According to the calculations with the galling model the galling behaviour of AA 5182 
sheet material is dependent on the surface texture. AA 5182 MF is, according to the model, 
more galling sensitive than AA 5182 EDT. This is in agreement with the experiments on 
the TNO slider-on-sheet tribometer, see figures 5.18 and 5.19. The experiments performed 
with AA 5182 EDT show that there is almost no material transfer. According to the model, 
material transfer occurs, but the effect is small over the first 500 metres. After this distance 
the material transfer increases. 

 Parameter Value 
T 0.38 
H 0.65 GPa 

Material parameters 

∆γ 1.1 J m−2 
lslide 1 m 
cfr 2⋅10−8 m2 J−1 

Other parameters 

µ 0.18 
Table 5.2. Physical parameters used in the galling 
model. 

 
Figure 5.20. Height of the asperities as a function of the number of 
sliding tracks for AA 5182 MF (graph 1) and AA 5182 EDT (graph 2). 
The graphs show the mean height of the lumps that are still growing. 
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The developed galling model is able to give the difference in galling trend in different 
situations. When compared with experiments, it does not give exactly the same results, but 
it already gives a distinction between different galling situations. 

5.6 Implementation of Galling Performance Indicator 
The calculated galling behaviour on micro and meso scale has to be translated to the macro 
scale in order to ascertain the galling behaviour on the different tool locations. Data 
obtained on the meso and micro scale, as presented in the former section of this chapter, has 
to be combined with data on the macro scale obtained by FEM simulations. 
The galling data that is obtained on the meso and micro scale should be transformed to a 
form suitable for the combination with FEM data. Surface properties like adhesion 
properties, hardness and roughness are used on the meso and micro scale. These values 
cannot immediately be used on the macro scale. These factors should be captured in a 
galling impact factor G, as will be discussed later. When a homogeneous type of sheet 
material is used and the tools on all locations have the same surface properties, this factor G 
is equal on every contact location. Factors that follow from operational conditions are the 
apparent contact pressure pa and the sliding distance lslide. These factors are used on the 
smaller scales, but are obtained by FEM simulations. These factors will be used to derive 
the Galling Performance Indicator (GPI) on macro scale. 
According to the galling calculations, that are performed in the former sections of this 
chapter, the lump growth is an (almost) linear function of n and pa, as shown in figures 5.7 
and 5.11. As shown in figures 4.32 to 4.34, the lump growth is in fact an (almost) linear 
function of the total sliding length n⋅lslide, so the linearity that follows from figure 5.7 will 
now not be used for the number of products that are formed, but for lslide. To investigate the 
galling effect for a deep drawing process, lslide is relevant for distinguishing different tool 
locations, in contrast to n, which is not a function of the tool location. Because pa varies 
during a production cycle, the GPI is formulated from these linear relations as an integral: 

 ∫= dlpGI aGPI  (5.24) 

Using equation (5.24) the GPI value IGPI is calculated for a location on the tool. The 
increment dl is the incremental length of sheet material that slides along the tool. The 
integral has to be performed for one production cycle. Integrating dl for one production 
cycle will result in the sliding length lslide. 
From a practical view of implementation, before using equation (5.24), a mapping of FEM 
data has to be performed on the tool. Usually, FEM software focuses on the product to be 
formed and so the physical quantities are only calculated for the blank. In section 2.2.1 it is 
mentioned that the modelled tools are used as geometrical constraints. Further, in the blank 
only the in-plane normal stresses and shear are calculated. The normal stress perpendicular 
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on the sheet has to be obtained from the contact elements. These elements will also be used 
for mapping the data on the tools. A contact element consists of two sets of nodes. One set 
is connected to the sheet, the other set will be projected on the tool surface when it comes in 
the neighbourhood of the tool, see figure 5.21. When this projection results in a positive 
gap, the sheet and the tool are still not in contact, when it results in a negative gap, the 
contact elements determine the contact pressure as given in equation (2.1). The projection 
of these nodes gives the possibility of relating blank location to tool locations. The value of 
pa at a location of the tool can now be calculated by interpolation of the contact pressures at 
the nearest contact nodes that are projected on the tool. Further, by tracing the movement of 
the contact nodes over the tool surface, the increment dl (for the discretized version of 
equation (5.24)) can be determined. 

This strategy of calculating IGPI is applied to the FEM simulation of the deep drawing 
process of the cup as presented in figures 2.2 and 2.3 with contact penalty 
Cn = 400 N mm−3. In figure 5.22 results are shown of the calculations of IGPI. In this figure, 

 
 
Figure 5.21. Part of sheet material and tools (grey areas) with sheet 
element nodes and contact elements. The tool at the left-hand side is 
not in contact, the tool at the right-hand side is partly in contact. 
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only the part of the integral of equation (5.24) is calculated; the value of G is given a unit 
value. 
In figure 5.22 only the effect is shown of the operational conditions pa and lslide. This 
calculation can be performed over one production cycle. Because this result can be obtained 
in one cycle, the computational costs are relatively low. The value of G has to be obtained 
by performing the calculations on the meso and micro scale. The value of G equals the 
lump growth height divided by pa and n⋅lslide. By dividing the total lump growth by n, the 
galling effect is given for one production cycle. So, the increase in height ∆h due to galling 
can in general be expressed by: 

 lGph a∆=∆  (5.25) 

For one product cycle in deep drawing ∆l = lslide. This is similar to wear, where the decrease 
in height is calculated with: 

 lpkh aw ∆=∆  (5.26) 

Although G gives the galling effect for one production cycle, it cannot be obtained by 
calculating the galling effect after one production cycle on the meso and micro scale. As 
can be observed in figures 5.7 and 5.8 the first cycles show start-up effects. After a number 
of cycles the lump growth is more stable. To get a realistic value of G, the lump growth 
should be in the stage of stable lump growth. 
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In figure 5.22 the effect is shown of the operational condition on the galling behaviour. 
From these values it becomes clear that the punch is the least sensitive to galling. Although 
the highest value of pa is on the punch, the values of lslide are low, which results in low 
values of IGPI. On the die and the blank holder, there is a combination of high values of pa 
and lslide, which results in high values of IGPI. Further, on the die and blank holder the effect 
can be observed that the blank diameter reduces during forming. Due to the shorter contact 

 
Figure 5.22. Deep drawing tools as assembly and individually with the values of IGPI 
plotted on it for G = 1. The scale of IGPI graphs is different for the different tools. 
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time at the outer diameter of the die and the blank holder, the value of IGPI decreases in the 
radial direction. 
The calculation that is presented in figure 5.22 is performed using equation (5.24). This 
equation is based on the galling model as presented in this chapter. For a galling model that 
takes more effects into account, for example the effective hardness due to strain of the sheet 
material and lubricant failure due to thermal effects, equation (5.24) has to be extended for 
these effects. That means that the integral is still a function of pressure and the sliding 
distance, but also of other quantities like strain and sliding velocity. In this way, the 
structure which is presented in this section can also be used for a more extensive galling 
model. 
The procedure as presented before can be used to implement the GPI as a post processor for 
a FEM simulation of a deep drawing process. This post processor gives the galling effect on 
the different tool locations that come in contact with the blank. This post processor is a 
relatively low computational cost implementation. The integral of equation (5.24) has to be 
performed once for a deep drawing cycle. The value of G has to be calculated beforehand 
on the meso and micro contact scale, which is a multi cycle calculation. 

5.7 Summary 
A galling model is developed for the multi asperity contact situation in a deep drawing 
process. From this galling model a Galling Performance Indicator (GPI) is formulated in 
such a way that it can be implemented as a post processor for FEM simulations. In order to 
make the transition from the single asperity galling model as presented in chapter 4 to the 
multi asperity model and the GPI the following steps are taken. 

– A contact model is developed that can deal with a meso and micro contact scale. 
On the micro scale polyhedron shaped asperities with a hexagon base are 
formulated that can be used on asperity level in the single asperity model. 

– A multi asperity galling model is developed. In this model the single asperity 
model is applied to all the contacts that are determined using the contact model. 

– Calculations are performed with the multi asperity galling model. From these 
calculations it follows that the galling effect is (almost) proportional to the contact 
pressure and to the sliding distance. Further, the galling behaviour is dependent on 
the dimensionless strength T of the lumps that are formed on the asperities. 
Although the lump growth is rather sensitive to the orientation on the single 
asperity scale, the orientation effect on a grinded surface is hardly noticeable. The 
spread of the orientations over the whole set of asperities almost cancelled out the 
orientation effect. 

– TNO slider-on-plot tests are performed to validate the galling model. According to 
these tests the galling model is in reasonable agreement with reality. 
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– A GPI is formulated on the macro scale. This indicator can be implemented as a 
post processor for deep drawing FEM simulations. This GPI is composed of a 
galling impact factor G and the operational conditions pa and lslide. G can be 
determined with the developed galling model on meso and micro scale, the 
operational conditions are obtained by FEM simulation. 
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6 Conclusions and recommendations 
In this thesis a model is presented that is developed for predicting the galling behaviour in 
deep drawing processes. In this chapter the conclusions of the research and 
recommendations for further research are given. The main conclusions obtained from this 
research are given below. 

6.1 Conclusions 

Chapter 3 
In order to investigate the galling behaviour on micro scale, single asperity experiments are 
performed with a tip of tool steel that represents a tool asperity which comes in contact with 
sheet material. From these single asperity tests it follows that material is transferred to the 
tool. 
 
For unlubricated contacts a lump grows in height and in front of the asperity. Due to this 
growth a new attack angle is formed in the contact. The new attack angle is material 
dependent. 
 
A trend can be observed that for longer sliding distances, more material transfers from the 
sheet to the tool. 

Chapter 4 
A single asperity lump growth model is developed. The model considers galling as a 
process that is based on two stages. In the first stage, material is transferred from the sheet 
to the tool, which forms a transfer layer on the asperity. In the second stage, a part of the 
transferred layer shears off, when the asperity with lump is not strong enough to resist the 
contact forces. When the mechanical stresses exceed the material strength in the lump, a 
part of the lump shears from it, in order to get a mechanically stable stress state within the 
lump. In this way, the model is able to explain the formation of a new attack angle, 
dependent on the strength of the lump. 
 
The adhesion and sliding distance are important factors of the lump growth. 
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Chapter 5 
From calculations with the multi asperity galling model, it follows that the galling effect is 
proportional to the contact pressure and to the sliding distance. Further, the galling 
behaviour is dependent on the dimensionless strength T of the lumps that are formed on the 
asperities. 
 
Good agreement is found between model and galling tests. 
 
The developed galling model is implemented as a post processor for finite element 
simulations and applied to the drawing of a cup. The areas, to be known as 'galling areas', 
are predicted well by the Galling Performance Indicator IGPI. 

6.2 Discussion 
According to the research that is presented in this thesis, the impact of a number of 
parameters on the galling behaviour becomes clear. Important parameters are the adhesion 
∆γ, the total sliding length lslide⋅n, the contact pressure pa and the strength of the lumps T. 
The sliding length is in most situations a value that is already determined by the product 
design and so, this parameter cannot be varied. The other parameters have more space for 
variation. Usually, the adhesion is reduced by lubrication. Further, by changing the die radii 
the contact pressure can be changed. The strength is mainly determined by the selected 
material, but the value of T is also influenced by strain. In order to get more insight in these 
issues a number of recommendations for further research are given in the following section. 

6.3 Recommendations 
In the chapters 4 and 5 a galling model is formulated. To reduce galling, systems are 
lubricated. According to the model of Van der Heide [20], as mentioned in chapter 2, 
galling does not take place if the local temperatures (at asperity level) do not exceed a 
critical temperature, Θ < Θcr. So the implementation of thermal effects in the galling model 
results in a useful extension for the Galling Performance Indicator IGPI. In the Galling 
Performance Indicator the galling factor G becomes: 

 
cr

cr

G
G

Θ≥Θ≠
Θ<Θ=

 if0
 if0

 (6.1) 

 
The strain of the sheet material influences the value of T of the lumps, because of its 
influence on the effective hardness. The model presented in this thesis is focussed on the 
hardness of the material in the case of no bulk deformation. Deep drawing is a forming 
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process, so the effect of the strain is present in reality. Further, locations with high values of 
IGPI can also be locations with high strains. It is therefore recommended that the effect of 
strain on T is taken into account in the Galling Performance Indicator. 
 
The model is based on a steady state contact pressure. In a deep drawing process the 
pressure varies at a certain tool location as a function of the punch position. The number of 
asperities in those contacts will change as a function of the punch displacement. A 
consequence of this effect is that the highest asperities can grow all the time, while other 
less high asperities can grow only at high contact pressures. So, a possible influence of 
large pressure fluctuations can be that the highest asperities grow more than the other 
asperities in height and that these asperities can scratch deeper into the sheet material at the 
moment of high contact pressure. It is recommended to investigate this effect on the meso 
and micro scale. 
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Appendix A: Stresses in pyramidal and hexagon 
based asperities 

A.1 Introduction 
A statics analysis will be given of a pyramid shaped asperity, as given in chapter 4. In the 
last section an extension is made for the hexagon based asperity. The characteristics and 
assumptions of the pyramid shaped asperity model are presented in section 4.3.2. The 
geometry of the tip is shown in figure A.1. The normal and tangential stress components on 
the face ABC σABC and τABC will be calculated. The results of these values will be used for 
further analysis. 

Given are: 
– the dimensions: l, w and h. 
– the plastic normal stress ppl on face BDC, pointing inward the asperity. 
– the plastic tangential stress τpl in the direction of .t

r
 The absolute value of τpl is 

given by τpl = µppl. The vector t
r

 is the tangent vector of BDC as close as possible 
to the direction of the plastic flow in the far field. This tangent is illustrated in 
figure A.1 by the lines with arrows on face BDC and is given by: 
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– an assumed constant tangential stress τABC and a linear function for the value 
normal stress σABC that is a function of the x-coordinate. 

– the assumption that the tangential stress τABC is constant and the normal stress σABC 
is a function of the x-coordinate according to: 

 
Figure A.1.Tip geometry with its dimension and flow lines on BDC of 
plastic deforming material. 
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 ( )xCABC θδσ +−= 0  (A.2) 

containing a spring stiffness C, deformation δ0 at x = 0 and an angle θ. These are 
virtual stiffness and deformations to get a description of σABC and have no physical 
meaning. 

The stresses on the face ABC that are calculated are defined as follows: 
– Normal stress σABC acts normal to ABC and a positive value points outward the 

asperity. 
– The tangential stress τABC acts tangent to ABC in the direction of the positive 

x-axis. 
In the calculations, some lengths and surface areas are used multiple times. These are 
defined as follows: 

– area of the triangle BDC: 
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– normal vector of BDC: 
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– area of the triangle ABC: 

 AABC = wl (A.5) 

A.2 Equilibrium calculations 
From equilibrium in the x and z-directions the stresses σABC and τABC are calculated. In these 
calculations, the focus is on the xz-plane. The y-direction is of importance to determine the 
direction vectors of the plastic stresses as given in equations (A.1) and (A.4). From these 
vectors the stress components in the x and z-directions can be derived. In further analyses, 
the y-components cancel out, because of the symmetry in the xz-plane. In the following 
sections the equilibrium is calculated in x and z-direction and the moment in the xz-plane. 
From these equilibrium calculations follow σABC and τABC. 

A.2.1 Equilibrium in x-direction 
The equation of equilibrium in the x-direction results in the following equations: 

 ΣFx = 0 (A.6) 

 0=+⋅+⋅− ∫∫∫ dAdAxtdAxnp ABCplpl ττ
rrrr

 (A.7) 
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 022 =++−− ABCABCplpl Ahwlwhp ττ  (A.8) 

From these equations follows the value of τABC: 
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A.2.2 Equilibrium in z-direction 
The equations of vertical equilibrium are given in the relations below: 

 ΣFz = 0 (A.10) 

 ( ) 0=⋅+⋅+⋅− ∫∫∫ dAznxdAztdAznp ABCplpl
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στ  (A.11) 
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In the last term of the right-hand side of equation (A.12) the symbol δc gives the value of 
the virtual displacement δ at location x = xc, where xc is the x-coordinate of the centroid of 
face ABC. From equilibrium in the z-direction σABC cannot be determined over the whole 
face ABC, but using (A.2) it can be derived that δc is proportional to the mean value of 
σABC. This gives the following: 
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A.2.3 Moment equilibrium 
The equation of moment equilibrium around to the y-axis is as given in the relations below: 

 ( ) 0=−=⋅×= ∫∫∫ zxyy xdFzdFyFdrM
rrr

 (A.14) 
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In (A.14) rr  and F
r

 are respectively the location and the force vector. In the last equation 
Icyy means the area moment of inertia of face ABC with respect to the line x = xc. From 
vertical and moment equilibrium, equations (A.13) and (A.16), it follows: 
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The normal stress σABC can be found using (A.2), (A.13) and (A.17). The definition of AABC, 
xc and Icyy is worked out in section A.4. 

A.3 Results 
In A.2 relations are presented to calculate σABC and τABC. To present these results, 
dimensionless relations are used. The lengths are normalized by l, that results in a 
dimensionless width w̄, height h̄, x-coordinate x̄, centroid x̄c, area ĀABC and area moment of 
inertia Ī cyy. 
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A.4 Geometrical properties of face ABC 
In equations (A.18) and (A.19) (equal to equations (4.8) and (4.9)) some properties of the 
surface ABC are referred to their general form, namely centroid x̄c, area ĀABC and area 
moment of inertia Ī cyy. This general formulation makes the equations more flexible as is 
shown for example in sections 4.3.4 to 4.3.7. 
 
The properties are defined as follows (in their dimensional form): 

 ∫= dAAABC  (A.20) 

 ∫= xdA
A

x
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c
1  (A.21) 

 ( ) ABCcyyABCcccyy AxIAxdAxdAxxI 2222 −=−=−= ∫∫  (A.22) 

In (A.22) Iyy is defined as: 

 ∫= dAxI yy
2  (A.23) 

The dimensions of face ABC are shown in figure A.2. The face is here presented in its 
'flexible' form as used in section 4.3.4 and 4.3.6 and in (the explanation of) equation (4.16), 
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that means, with extension of triangle AEB and crack at point C. In the initial model 
formulation in section 4.3.2 lb and lcr are zero. In section 4.3.4 lb is introduced and in 
section 4.3.6 lcr. 

Given the dimensions as shown in figure A.2, equations (A.20), (A.21) and (A.23) become: 
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Using (A.24) to (A.26) in (A.22) gives Icyy. The dimensionless form of AABC, xc and Icyy is 
obtained by dividing the quantities by respectively l2, l and l4. 

A.5 Geometrical variation of geometry 
In section 4.5 an asperity geometry is used in the galling model that is an extension of the 
geometry as presented in the previous section of this appendix. The results that are 
generated before can be reused with some adaptations. These adaptations will be given 
below. 

 
Figure A.2. Dimensions of face ABC, including the adaptations of the 
extension with triangle AEB and the formation of a crack at point C. 
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In section 4.5 an asperity is proposed with a hexagon base as is shown in figure 4.23. This 
base is divided into three sections, where I and III have pyramidal shape and section II a 
prismatic shape. 
To calculate the forces, equation (A.7) will be used. In equation (A.7) a force equilibrium 
equation is given. Here, only the first two integrals that calculate the plastic forces will be 
used. In the current situation the integrals contain constant values. So the integral can be 
reduced to a multiplication of the plastic stress, the inner product result and the area. The 
plastic stress is taken as constant, the inner product and the area has to be calculated. The 
inner product can be calculated as the normal and the tangent unit vectors are known. These 
can be calculated using equations (A.1) and (A.4) in an adapted form. In equations (A.1) 
and (A.4) l, w and h are used to give the orientation of the plane. For the current situation w 
has to be replaced by the following to give the orientation: 

– Section I: 
αcosI

I

wl
lww

+
→  

– Section II: αcotlw →  

– Section III: 
αcosIII

III

wl
lw

w
−

→  

For section I and II this can be derived using the figures A.3 and A.4. These figures give 
the orientation and the dimensions of the contact planes. Using these figures the contact 
area can also be found. 
For section I the forces will be derived using figure A.3. The area and the normal and 
tangent unit vectors of face AGF are given by: 
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Using equations (A.27a) to (A.27c) the forces in the x and y-direction can be calculated 
using the first two integrals of equation (A.7). For the y-direction the unit x-vector has to be 
replaced by the unit y-vector in the integrals. This gives the following forces: 
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For section II the forces will be derived using figure A.4. The area and the normal and 
tangent unit vectors of face AGF are given by: 
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Using equations (A.29a) to (A.29c) the following forces in the x and y-direction are found: 
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Figure A.3. Frontal part of section I of the asperity. 

 
Figure A.4. Frontal part of section II, an oblique prism, of the 
asperity. 
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Section III is more or less a mirrored version of section I. The equations (A.28a) and 
(A.28b) can be used again with small adaptations. In both equations the variable α should 
be replaced with −α, equation (A.28b) should be multiplied by −1 and wI replaced by wIII. 
Summation of the forces as derived above for the three section results in the total forces in x 
and y-direction: 
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Appendix B: Geometry and material aspects of 
adhesion 

To determine adhesion energies, the non-retarded Van der Waals interaction free energy 
between two bodies, an atomic approach is used that is extended to bodies by pairwise 
additivity. The equation that is used for the energy between two atoms is [7]: 

 6d
CW ab

atat −=−  (B.1) 

Equation (B.1) gives the interaction energy between the atoms a and b with a constant Cab 
that gives the interaction at a unit distance, dependent on the types of atoms a and b and d 
the distance between the atoms. The interaction energy between an atom of type a and a 
body consisting of atom type b, simply given as body b, can be calculated, using the density 
of atoms in body b, ρb: 

 dV
d
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ρ
 (B.2) 

Given a body that is defined as a half space with its boundary plane at a distance of D from 
the atom, as given in figure B.1 gives: 
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If the interaction energy of equation (B.3) not only acts on a single atom, but also on a 
whole body made of atom type a, called body a, the result of equation (B.3) should be 
integrated over the whole body a. Taking for this body again a half space, separated with a 
distance D from the other half space, the interaction energy per unit area becomes: 

 
Figure B.1. Dimensions in interaction energy calculation. 



172 Appendix B: Geometry and material aspects of adhesion 

 
( ) 22

0
3 12126 D

A
D

C
zD

dzC
W Hbaabbaab

bodybody π
ρρπρρπ

−=−=
+

−= ∫
∞

−  (B.4) 

The last term of equation (B.4) contains AH, the Hamaker constant, which is discussed in 
section 4.4. The result of equation (B.4) is a result that can be found in adhesion literature, 
like [26]. 
The question arises how far the interacting bodies can be downscaled, so that equation 
(B.4) still gives a reasonable answer. Equation (B.3) will be derived again, where the half 
space body b is replaced by half a ball with radius R as shown in figure B.1. Atom a is 
located at the symmetry axis of body b. 
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The result of equation (B.5) shows that as R is an order of magnitude larger than D, the 
terms that contain R in the denominator are two or three orders of magnitude smaller than 
the last term. This last term equals the answer in the case of a half space. So, as long as 
R >> D, the model assuming a half space is justified. 
The next step is the determination of the interaction energy of equation (B.5) that acts on a 
body a instead of an atom. The interaction energy between body a and b will be calculated 
per unit area of a at the symmetry axis of b. Assumed is that body a is a plate with a 
thickness R and is located at a distance D from b. This results in the following: 
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In equation (B.6) R̄ is R/D. From equation (B.6) it follows that as R is an order of 
magnitude larger than D, its effect decreases by two orders of magnitude. So, the result of 
equation (B.6) converged to the result given in equation (B.4) as is shown in figure B.2. In 
figure B.2 is shown ∆ W̄̄  = (Wball-body − Wbody-body)/Wbody-body as defined by equations (B.4) 
and (B.6) as a function of R̄. From this graph it follows that the relative error of equations 



 

 

173 

(B.4) is reduced already to 4 % in the case where R is 10D. Assuming that D equals the 
atomic distance, equation (B.4) can already be used for very small particles. 
It can be concluded that the real geometry has small effect on the interaction energy. This 
means that only considering the geometry independent part is sufficient. 

The Hamaker constant, as given above, is based on the assumption that pairwise additivity 
can be used. However, the Van der Waals force between two atoms will change due to the 
presence of a third atom. This means that the assumption of pairwise additivity of 
molecular interactions is not valid in general. This has consequences for the value of AH, 
but the interaction energy remains proportional to 1/d6, so the geometrical relations remain 
valid. 
Pairwise additivity gives an AH as a function of Cab, ρa and ρb. As mentioned above, in 
general it cannot be stated that the derived AH has a proper value. Other theories exist, 
which avoid the shortcomings of additivity, like the Lifshitz theory [7]. This theory derives 
the forces between bodies on the basis of bulk properties as the dielectric constants and the 
refractive indices, instead of atomic structure. The bodies are treated as continuous media. 
Only the value of AH is calculated in a different manner, but the geometrical relations 
remain valid. This theory will not be worked out here. 

 
Figure B.2. Normalized difference on interaction energy between a 
half space and half a normalized ball with radius R̄. 
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